龙城高级中学刘一兰5.3.1函数的单调性龙城高级中学刘一兰一、内容和内容解析1.内容函数的单调性与函数导数的正负之间的关系,根据导数的正负性判断函数的单调性.2.内容解析单调性是函数的重要性质,它不仅反映了函数变化的趋势,还是研究函数极值与最大(小)值的基础性问题.虽然可以通过函数图象的升降观察函数的单调性,但对大多数函数而言,画出其图象不是一件容易的事情.至于根据函数单调性的定义去判断函数的单调性,则由于含字母的代数式值的大小比较通常较困难,所以也不是通性通法.导数是关于瞬时变化率的数学表达,它定量地刻画了函数的局部变化,因而可以利用导数更加精确地研究函数的性质.有了导数,可以把函数单调性的判断问题转化为导数的运算问题.通过函数导数的正负性判断出函数的单调性,这种方法在解决函数的单调性问题时具有“普适性”.通过探究函数图象的升降与导数的正负之间的关系,得出可用导数判断函数单调性的结论与方法,这一过程中蕴含着数形结合的思想.利用函数的导数及其运算,将判断函数的单调性这一复杂问题、转化为步骤明确的运算问题,这又蕴含了重要的算法思想.用导数研究函数的单调性,对于并学生利用两数模型描述客观事物的变化规律、解决优化等实际向题有着非常重要的意义,是学生的数学运算与数学建模素养的很好的载体.3.教学重点建立函数的单调性与导数的正负之间的联系.二、目标和目标解析1.目标(1)通过具体函数的图象,发现函数的单调性与导数的正负之间的关系,体会数形结合思想,发展直观想象素养.(2)能根据函数导数的正负判断函数的单调性,体会算法思想,发展数学运算素养.2.目标解析达成上述目标的标志是:(1)对于给定的具体函数的图象,能借助导数的几何意义判断出导数的正负与函数的单调性,并将二者关联起来.(2)对于给定的函数,能利用导数求出函数的单调递增(递减)区间;能根据导函数的正负信息画出简单函数的大致图象.三、教学问题诊断分析1.问题诊断由于高中数学课程不安排拉格朗日中值定理的内容,所以说明“若导数符号为正(或负),则函数是单调递增(或递减)函数”是非常困难的事情,这是本节课的教学难点之一,解决这个难点,除了充分利用导数的几何意义,还要利用信息技术工具帮助学生观察发现结论.利用导数判断函数的单调性时,经常会遇到导数在某个区间上存在零点,但函数在这个区间上仍然是单调递增(或递减)的问题(如),这也是本节课可能遇到的教...