等差等比数列证明问题【基础知识梳理】一、等差数列的判定方法(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N*)成立;(3)通项公式法:验证an=pn+q;(4)前n项和公式法:验证Sn=An2+Bn.二、等比数列的判定方法(1)定义法:若=q(q为非零常数,n∈N*)或=q(q为非零常数且n≥2,n∈N*),则{an}是等比数列.(2)等比中项公式法:若数列{an}中,an≠0且a=an·an+2(n∈N*),则数列{an}是等比数列.(3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N*),则{an}是等比数列.(4)前n项和公式法:若数列{an}的前n项和Sn=k·qn-k(k为常数且k≠0,q≠0,1),则{an}是等比数列.【考点突破】考点一等差数列的判定与证明例1:已知数列满足:且,求证:为等差数列证明:设,则代入可得:为等差数列,即为等差数列例2、已知数列{an}中,a1=,an=2-(n≥2,n∈N*),数列{bn}满足bn=(n∈N*).求证:数列{bn}是等差数列;(1)证明:因为an=2-(n≥2,n∈N*),bn=(n∈N*),所以bn+1-bn=-=-=-=1.又b1==-.所以数列{bn}是以-为首项,1为公差的等差数列.考点二等比数列的判定与证明例3:已知数列的首项.求证:数列为等比数列思路一:构造法,按照所给的形式对已知递推公式进行构造,观察发现所证的数列存在这样的倒数,所以考虑递推公式两边同取倒数:即,在考虑构造“”:即数列是公比为的等比数列思路二:代入法:将所证数列视为一个整体,用表示:,则只需证明是等比数列即可,那么需要关于的条件(首项,递推公式),所以用将表示出来,并代换到的递推公式中,进而可从的递推公式出发,进行证明解:令,则递推公式变为:是公比为的等比数列。即数列为等比数列例4:数列{}的前n项和为,(*).设,证明:数列是等比数列,并求出的通项公式思路:本题所给等式混合在一起,可考虑将其转变为只含或只含的等式,题目中倾向于项的关系,故考虑消掉,再进行求解解:①②①②可得:即是公比为的等比数列令代入(*)可得:【课堂小结】(1)构造法:在构造的过程中,要寻找所证数列形式的亮点,并以此为突破对递推公式进行变形,如例1中就是抓住所证数列有一个“倒数”的特点,进而对递推公式作取倒数的变换。所以构造法的关键之处在于能够观察到所证数列显著的特点并加以利用(2)代换法:此方法显得模式化,只需经历“换元→表示→代入→化简”即可,一是代换体现...