高中数学必修第一册RJRJA精品教学课件第五章三角函数5.7三角函数的应用1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型.学习目标提出问题现实生活中存在大量具有周而复始、循环往复特点的周期运动变化现象,如果某种变化着的现象具有周期性,那么就可以考虑借助三角函数来描述.本节通过几个具体实例,说明三角函数模型的简单应用.问题1某个弹簧振子(简称振子)在完成一次全振动的过程中,时间t(单位:s)与位移y(单位:mm)之间的对应数据如表5.7.1所示.试根据这些数据确定这个振子的位移关于时间的函数解析式.请你查阅资料,了解振子的运动原理.典例解析振子的振动具有循环往复的特点,由振子振动的物理学原理可知,其位移狔随时间狋的变化规律可以用函数y=Asin(ωt+φ)来刻画.根据已知数据作出散点图,如图5.7.1所示.现实生活中存在大量类似弹簧振子的运动,如钟摆的摆动,水中浮标的上下浮动,琴弦的振动,等等.这些都是物体在某一中心位置附近循环往复的运动.在物理学中,把物体受到的力(总是指向平衡位置)正比于它离开平衡位置的距离的运动称为“简谐运动”.可以证明,在适当的直角坐标系下,简谐运动可以用函数y=Asin(ωx+φ),x∈[0,+∞)表示,其中A>0,ω>0.描述简谐运动的物理量,如振幅、周期和频率等都与这个解析式中的常数有关:归纳总结请你查阅资料,了解交变电流的产生原理.典例解析1.如图所示的是一质点做简谐运动的图象,则下列结论正确的是()达标检测A.该质点的运动周期为0.7sB.该质点的振幅为5cmC.该质点在0.1s和0.5s时运动速度最大D.该质点在0.3s和0.7s时运动速度为零【解析】由题图可知,该质点的振幅为5cm.【答案】B2.与图中曲线对应的函数解析式是()A.y=|sinx|B.y=sin|x|C.y=-sin|x|D.y=-|sinx|【解析】注意题图所对的函数值正负,因此可排除选项A,D.当x∈(0,π)时,sin|x|>0,而图中显然是小于零,因此排除选项B,故选C.【答案】C3.车流量被定义为单位时间内通过十字路口的车辆数,单位为辆/分,上班高峰期某十字路口的车流量由函数F(t)=50+4sint2(0≤t≤20)给出,F(t)的单位是辆/分,t的单位是分,则下列哪个时间段内车流量是增加的()A.[0,5]B.[5,10]C.[10,15]D.[15,20]【解析】当10≤t≤15时,有32π<5≤t2≤152<52π,此时F(t)=50+4sint2是增函数,即车流量在增加.故应选C.【答...