高中数学必修第一册RJRJA精品教学课件第五章三角函数5.7三角函数的应用课程目标1.了解三角函数是描述周期变化现象的重要函数模型,并会用三角函数模型解决一些简单的实际问题.2.实际问题抽象为三角函数模型.数学学科素养1.逻辑抽象:实际问题抽象为三角函数模型问题;2.数据分析:分析、整理、利用信息,从实际问题中抽取基本的数学关系来建立数学模型;3.数学运算:实际问题求解;4.数学建模:体验一些具有周期性变化规律的实际问题的数学建模思想,提高学生的建模、分析问题、数形结合、抽象概括等能力.自主预习,回答问题阅读课本242-245页,思考并完成以下问题1.解三角函数应用题的基本步骤?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。1.三角函数可以作为描述现实世界中现象的一种数学模型.其基本模型可化为的形式.周期y=Asin(ωx+φ)+B知识清单2.解三角函数应用题的基本步骤:(1)审清题意;(2)搜集整理数据,建立数学模型;(3)讨论变量关系,求解数学模型;(4)检验,作出结论.1.电流I(A)随时间t(s)变化的关系是I=2sin100πt,t∈(0,+∞),则电流I变化的周期是()A.1100B.100C.150D.50解析:T=2π|ω|=2π100π=150.答案:C小试牛刀2.如图所示,一个单摆以OA为始边,OB为终边的角θ(-π<θ<π)与时间t(s)满足函数关系式θ=12sin2t+π2,则当t=0时,角θ的大小及单摆频率是()A.12,1πB.2,1πC.12,πD.2,π解析:t=0时,θ=12sinπ2=12;又T=2π2=π,所以单摆频率为1π.答案:A3.如图为某简谐运动的图象,则这个简谐运动需要______s往返一次.解析:观察图象可知此简谐运动的周期T=0.8,所以这个简谐运动需要0.8s往返一次.答案:0.84.如图所示的图象显示的是相对于平均海平面的某海湾的水面高度y(m)在某天24h内的变化情况,则水面高度y关于从夜间0时开始的时间x的函数关系式为________________.解析:设y与x的函数关系式为y=Asin(ωx+φ)(A>0,ω>0),则A=6,T=2πω=12,ω=π6.当x=9时,ymax=6.故π6×9+φ=π2+2kπ,k∈Z.取k=1得φ=π,即y=-6sinπ6x.答案:y=-6sinπ6x题型分析举一反三题型一三角函数模型在物理学中的应用【例1】已知弹簧上挂着的小球做上下振动时,小球离开平衡位置的位移s(cm)随时间t(s)的变化规律为s=4sin2t+π3,t∈[0,+∞).(1)用“五点法”作出这个函数的简图;(2)小球在开始振动...