12.2.2直线的两点式方程(人教A版普通高中教科书数学选择性必修第一册第二章)深圳市盐田高级中学张成宇一、教学目标1.探索并掌握直线的两点式方程;2.根据直线位置的不同几何要素,确定直线方程的不同形式.二、教学重难点重点:直线的两点式和截距式方程.难点:直线的两点式方程的建立.三、教学过程1.直线的两点式方程的建立1.1温故知新,引发思考我们知道确定直线位置的基本几何要素有两类:(1)直线上一点和方向(斜率);(2)两点确定一条直线.我们已经探索了过点,斜率为的直线的点斜式方程为.特例:直线的斜截式方程.问题1:(1)已知直线经过两点,(其中,),因为两点确定一条直线,所以直线是唯一确定的.即是说,对于直线上的任意一点,它的坐标与点,的坐标之间具有唯一确定的关系.这一关系是什么?【预设答案】方案一:用点,的坐标可以唯一确定直线的方程,点的坐标是方程的解;方案二:由点与点,三点中任意两点确定的直线的斜率相等.【设计意图】通过方案一可以引导学生理解“直线上任意点的坐标都是直线方程的解”,从而领悟到“表示直线上任意点的坐标满足的关系,也就是确定直线的方程”.方案二可2以直线建立点的坐标满足的关系式,两种方案中斜率均处于核心地位.1.2尝试探究,建立方程探究活动:以小组为单位在方案一和方案二中选取一种方案探究点的坐标与点,的坐标之间的关系,然后以组为单位汇报探究的过程和分享探究成果.【活动预设】让学生自主设计探究思路,规划探究步骤,经历数学探究过程,规范探究成果,从而积累数学活动经验.【设计意图】不同的方案将得到不果的探究成果,根据所得关系式的不同,进而引导学生思考,如何统一结论,规范探究成果.问题2:如何用统一的形式表示所得结果,谈谈你的想法?【活动预设】(1)从得到的关系式的形式上,分析其异同点;(2)化异为同,使得结果的结构特点更明确,形式更美.【设计意图】引导学生对所得成果,进一步分析,找出其区别与联系,并在此基础上进行优化,积累数学活动经验.问题3:在探究过程中,你认为关键步骤是什么,谈谈你的体会?【活动预设】引导学生发现两种方案中,斜率均处于核心地位.斜率公式是联系直线上任意点与两已知点桥梁,是化“两点”为“一点和方向”的关键,体会所得直线方程与点斜式方程的关系.【设计意图】引导学生体会斜率在建立直线方程的过程中处于核心地位,以斜率公式为桥梁,将问题“两点确定一条直线”转化为“一点和...