《4.4*数学归纳法》教学设计深圳市新安中学(集团)高中部任镜夷一、【教学目标】(1)知识与技能目标:①了解数学归纳法的原理,掌握数学归纳法的基本步骤;②能用数学归纳法证明数列中的一些简单命题。(2)过程与方法目标:借助具体实例,通过对证明一个数学命题的过程和多米诺骨牌全部倒下条件过程的类比和迁移,从特殊到一般,抽象出证明数学命题的方法,进而推广为数学归纳法的原理和步骤,让学生经历知识的构建过程,体会归纳递推的数学思想。(3)情感态度与价值观目标:借助具体实例,加强数学归纳法的提炼过程和认知过程,激发学生的学习热情,深挖其育人价值,培养学生敢于猜想,善于思考,严谨求实的科学精神,培养学生发现问题、提出问题,解决问题的数学能力。二、【教学重难点】教学重点:了解数学归纳法的基本思想和原理,掌握数学归纳法的基本步骤,能应用数学归纳法证明与正整数n有关的数学命题;教学难点:数学归纳法的原理。三、【教学过程】(一)引入生活实例,启发学生思维(情境一)某人看到树上有几只乌鸦,深有感触“天下乌鸦一般黑。”你认为这样的说法可靠吗?为什么?答:不可靠,以偏概全。事实上,这是不完全归纳的体现,体现着数学中的归纳思想。数学中,我们把通过验证一系列特殊情况得出一般性结论的方法称为归纳法。那么归纳法可以分为“不完全归纳法”和“完全归纳法”。“不完全归纳法”是只考察部分对象,只验证一部分个体成立,就得到一般性结论的方法,这样的结论不一定可靠。例如,我们在推导等差数列通项公式时,采用这样的方法:由此,我们猜想。这就是不完全归纳法。那么这样的猜想真的正确吗?结论还有待证明。而“完全归纳法”考察全体对象,是对每一个个体进行逐一验证后得到一个一般性结论,这样的结论一定可靠。(情境二)在数列{an}中,已知a1=1,an+1=12−an(n∈N¿),经计算发现a1=1,,a2=12−1=1,a3=12−1=1,a4=12−1=1,由此我们猜想对于任意一个正整数n,an=1(n∈N¿).问题:如何验证这个猜想呢?我们发现,每一次验证,都对这个猜想的正确性增添了一分把握,但是我们不能这样无限的验证下去,这是不现实的。那么我们就想找到一种方法,能够通过有限个步骤的推理,证明n取所有正整数时命题都成立。【设计意图:】以上两个情境都是在合情推理的基础上提出猜想,但它们的正确性还有待证明。让学生意识到需要建立一种无穷递推机制,将一个无穷的归纳过程转化为有限步骤的演绎,实现从有限到无...