梅林中学马久杰8.2.1一元线性回归模型梅林中学马久杰一、内容与内容解析1.内容:一元线性回归模型的引入,一元线性回归模型的概念,体会函数模型与回归模型的区别。2.内容解析:(1)一元线性回归模型的引入:根据前面的学习,同学们是可以根据成对样本数据的散点图和样本相关系数,可以推断两个变量的相关关系,正相关,还是负相关,以及线性相关程度的强弱等。进一步地,如果能像建立函数模型刻画两个变量之间的确定性关系那样,通过建立适当的统计模型刻画两个随机变量的相关关系,也就可以利用模型研究两个变量之间的随机关系,并通过模型进行预测,这样就帮助我们解决了很多问题。(2)一元线性回归模型的概念:根据散点图,我们能发现散点大致分布在一条直线附近,表现两个变量之间有较强的线性相关关系,因此我们可以用一次函数来刻画父亲身高对儿子的影响,而把影响儿子身高的其他因素,作为随机误差,得到刻画两个变量之间关系的线性回归模型。其中随机误差是一个随机变量。用x表示父亲身高,Y表示儿子身高,e表示随机误差。(3)函数模型和回归模型的区别:函数模型刻画的是函数关系,回归模型刻画的事相关关系。比如炮弹发射后的轨迹可用二次函数模型刻画;人的体重和身高的关系可用一元线性回归模型刻画。3.教学重点:理解一元线性回归模型的概念,能说明函数模型与回归模型的区别。二、目标与目标解析1.目标:(1)理解一元线性回归模型的表达式及模型中参数的意义。(2)探究如何利用成对样本数据建立统计模型,并利用模型进行预测的问题。(3)通过探究儿子身高与父亲身高的相关关系,思考这两个变量之间的关系不可以用函数模型来刻画进而引入一元线性回归模型的概念,体会引入一元线性回归模型的重要性。2.目标解析:达成上述目标的标志分别是:(1)知道一元线性回归模型的参数的意义。(2)能利用样本数据建立统计模型并会进行预测。(3)知道一元线性回归模型建立的必要性。三、教学问题诊断解析1.问题诊断(1)让学生体会引入一元线性回归模型的必要性,也是教学的难点,学生在处理两个变量之间的关系时首先想到函数关系进而建立函数模型,结合实例中样本数据,存在父亲身高相同,而儿子身高不同的情况.例如,第梅林中学马久杰6个和第8个观测的父亲身高均为172cm,而对应的儿子身高分别为176cm和174cm;同样,第3,4两个观测中,儿子身高都是170cm,而父亲身高分别为173cm和169cm.可见儿子身高和父亲身高之间不是函数关系,也...