2.4线段的和与差一、教学目标(一)知识与技能1.理解两条线段的和与差,并会作出两条线段的和与差;2.理解线段的中点,会用数量关系表示中点及进行相应的计算。(二)过程与方法培养学生动手操作,自主探究能力,提高学生的数形结合的思想,初步学会数学的数形结合的方法。(三)情感、态度与价值观积极参与数学动手活动,增强学习数学重在应用的意识,激发学习兴趣,发展乐于探索的精神。二、教学重难点(一)重点作图,线段中点的概念及表示方法(二)难点线段中点的应用三、教学过程教学内容教师活动学生活动一、情景引入我们从宣化区到赵川行驶的路程为60km,从赵川到庞家堡行驶的路程为20km,那么从宣化区到庞家堡的路程是多少哪?今天我们就来学习线段的和与差的问题。二、新知探究(一)探究线段的和与差概念:问题1、我们把宣化区和赵川之间的路程看作线段a,再把赵川到庞家堡的路程看作b,那么宣化区到庞家堡的路程是多少?怎么表示哪?问题2、如果庞家堡在赵川之间,那么宣化区到庞家堡的路程又该是多少?怎么表示哪?通过实际生活引入,激发学生学习兴趣。提出两个问题,并提问学生学生在教师的激情互动中,注意思考聆听。通过学生讨论研究得出两个问题的结论:问题1是a+b像这样,对于问题1我们把线段AC就叫做线段a与线段b的和;对于问题2我们把线段AC就叫做线段a与线段b的差。练习:看图用线段填空(1)AB+BC=(2)DA=DC+(3)CD=AD-(4)BD=CD+=AD-(二)探究线段的画法:已知:线段a和线段b①请画出线段AB,使得AB=2a+b②请画出线段AC,使得AC=2a-b(三)探究线段的中点:在一张透明的纸上画出线段,你能准确的将它分成两条相等的线段吗?如果线段AB上有一点C,把线段AB分成两条线段AC和BC,如果AC=BC,那么点C就叫做线段AB的中点。于是有类比的得出三等分点、四等分点的概念假如是这样多近啊!把宣化区、赵川、庞家堡标上A、B、C板书概念准备利用尺规进行作图让学生更深的理解线段的和与差。利用动手操作找出线段的中点板书提示注意两点:①A、B、C三点共线;②AC=BC推广到三等问题2是a-b理解线段的和与差的概念练习填空学生尝试各种方法,包括测量等等。思考后动手尝试找中点(方法有测量,折叠等)理解中点三、例题讲解例1、如图如果AB=CD,试说明线段AC与BD有怎样的关系?分析:线段BC是公共部分,利用等式性质可推出说明:略变式:如果已知条件改为如图情况结果又如何?说明:略例2、已知:如图线段AC=6,BC=4,M为线段AC的中点...