学科网(北京)股份有限公司《6.4.1平面几何中的向量方法》教学设计本小节内容选自《普通高中数学必修第一册》人教A版(2019)第六章《平面向量及其应用》的第四节《平面向量的应用》。以下是本节的课时安排:6.4平面向量的应用课时内容平面几何中的向量方法向量在物理中的应用举例余弦定理、正弦定理所在位置教材第38页教材第40页教材第42页新教材内容分析本节的目的是让学生加深对向量的认识,更好地体会向量这个工具的优越性。对于向量方法,就思路而言,几何中的向量方法完全与几何中的代数方法一致,不同的只是用”向量和向量运算“来替代”数和数的运算“。物理学家很早就在自己的研究中使用向量的概念,并早已发现这些量之间可以进行某种运算。数学家在物理家使用向量的基础上,对向量又进行了深入研究,使向量成为研究数学和其他科学的有力工具。本节将举例说明向量在解决物理问题中的应用。余弦、正弦定理是研究任意三角形边角之间关系的重要开端;用余弦、正弦定理解三角形,是典型的用代数的方法来解决的几何问题的类型;在日常生活和工业生产中的应用又十分广泛核心素养培养通过对用向量法解决平面几何问题的学习,培养学生数学抽象、数学运算、数学建模等数学素养.通过实例,引导学生用向量方法解决物理中的速度、力学问题,培养学生的数学建模、数学运算的核心素养。通过对余弦定理、正弦定理的学习,培养学生数学抽象、数学运算、数学建模等数学素养。教学主线平面向量的线性运算、坐标表示前面学生学习了平面向量的运算,初中就已经有了平面几何的知识,本节课是探讨平面几何中的向量方法,让学生学会用向量的方法去解决几何问题。学科网(北京)股份有限公司1.会用向量方法解决简单的几何问题,培养数学抽象的核心素养;2.体会向量在解决几何问题中的作用,提升数学建模的核心素养。1.重点:用向量方法解决几何问题的基本方法:向量法解决几何问题的“三步曲”。2.难点:能够将几何问题转化为平面向量问题。(一)新知导入1.创设情境,生成问题向量理论的发展有着深刻的几何背景.这一源泉最早可追溯到莱布尼兹的位置几何的概念.莱布尼兹认为代数仅仅能表达未定的数或量值,不能直接表达位置、角度和运动,利用代数运算来分析一个图形的特点、寻找方便的几何证明和构造有时是很困难的.鉴于此,他提出了一个“新代数”,其中几何实体可以用符号来表示,并且这些符号可以直接进行运算,它不需要大量的乘法,不需要添加令人困惑的太多...