学科网(北京)股份有限公司《6.3.1平面向量基本定理》教学设计本小节内容选自《普通高中数学必修第一册》人教A版(2019)第六章《平面向量及其应用》的第三节《平面向量基本定理及坐标表示》。以下是本节的课时安排:课时内容平面向量基本定理平面向量的正交分解及坐标表示平面向量加减运算的坐标表示平面向量数乘运算的坐标表示平面向量数量积的坐标表示所在位置教材第25页教材第27页教材第29页教材第31页教材第34页新教材内容分析平面向量的基本定理揭示了平面向量之间的基本关系,是向量解决问题的理论基础,同时平面向量的基本定理也为我们提供了一种重要的数学转化思想。平面向量基本定理是坐标表示的基础,坐标表示使平面中的向量与坐标建立起了一一对应的关系,这为通过“数”的运算处理“形”的问题搭建了桥梁,也决定了本课内容在向量知识体系中的核心地位。在教学中始终抓住向量具有几何与代数双重属性,进一步熟悉向量的坐标表示及运算法则、运算律;熟悉向量代数化的重要作用和在实际生活中的应用,加强方程思想和数学应用意识。前面已经找出两个向量共线的条件,本节则进一步地把向量共线的条件转化为坐标表示,只要将向量用坐标表示出来,再运用向量相等的条件就可以得出平面向量共线的坐标表示。由于平面向量数量积涉及了向量的模向量的夹角,因此在实现向量的数量积的坐标表示后,向量的模、夹角也都可以与向量的坐标联系起来。核心素养培养理解平面向量基本定理及其意义,了解向量基底的含义,培养学生的数学抽象的核心素养;掌握平面向量基本定理,会用基底表示平面向量,培养学生数学运算的核心素养。借助平面直角坐标系,掌握平面向量的正交分解及坐标表示,培养学生数学抽象和直观想象的核心素养。会用坐标表示平面向量的加、减运算,培养学生数学运算的核心素养。掌握两个向量数乘的坐标运算法则,培养学生数学运算的核心素养;能根据平面向量的坐标,判断向量是否共线,培养学生逻辑推理的核心素养。通过对平面向量数量积的坐标表示的学习,培养学生数学运算的数学素养;能根据向量的坐标计算向量的模、夹角及判定两个向量垂直,培养学生数学运算、逻辑推理的数学素养。教学平面向量基本定理学科网(北京)股份有限公司主线平面向量基本定理是在学习了共线向量基本定理的前提下,进一步研究平面内任意向量的表示,为今后平面向量的坐标运算建立向量坐标的一个逻辑基础,只有正确地构建向量的坐标才能有正确的坐标运算。平...