第2章2.3.2第2课时一、选择题(每小题5分,共20分)1.已知双曲线方程为x2-=1,过P(1,0)的直线l与双曲线只有一个公共点,则l的条数为()A.4B.3C.2D.1解析:数形结合知,过点P(1,0)有一条直线l与双曲线相切,有两条直线与渐近线平行,这三条直线与双曲线只有一个公共点.答案:B2.设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为()A.B.C.D.解析:设双曲线方程为-=1(a,b>0),不妨设一个焦点为F(c,0),虚轴端点为B(0,b),则kFB=-.又渐近线的斜率为±,所以由直线垂直关系得-·=-1(-显然不符合),即b2=ac,又c2-a2=b2,故c2-a2=ac,两边同除以a2,得方程e2-e-1=0,解得e=或e=(舍).答案:D3.已知双曲线-=1(a>0,b>0)的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线的离心率的取值范围是()A.(1,2]B.(1,2)C.[2,+∞)D.(2,+∞)解析:根据双曲线的性质,过右焦点F且倾斜角为60°的直线与双曲线只有一个交点,说明其渐近线的斜率的绝对值大于或等于tan60°=,即≥,则=≥,故有e2≥4,e≥2.故选C.答案:C4.P是双曲线-=1的右支上一点,M、N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为()A.6B.7C.8D.9解析:设双曲线的两个焦点分别是F1(-5,0)与F2(5,0),则这两点正好是两圆的圆心,当且仅当点P与M、F1三点共线以及P与N、F2三点共线时所求的值最大,此时|PM|-|PN|=(|PF1|+2)-(|PF2|-1)=6+3=9.答案:D二、填空题(每小题5分,共10分)5.过双曲线C:-=1(a>0,b>0)的一个焦点作圆x2+y2=a2的两条切线,切点分别为A,B,若∠AOB=120°(O是坐标原点),则双曲线C的离心率为________.解析: ∠AOB=120°⇒∠AOF=60°⇒∠AFO=30°⇒c=2a,∴e==2.1答案:26.已知双曲线-=1的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是________.解析:由题意知F(4,0),双曲线的两条渐近线方程为y=±x,当过F点的直线与渐近线平行时,满足与右支只有一个交点,画出图形,通过图形可知,-≤k≤.答案:三、解答题(每小题10分,共20分)7.已知双曲线3x2-y2=3,直线l过右焦点F2,且倾斜角为45°,与双曲线交于A、B两点,试问A、B两点是否位于双曲线的同一支上?并求弦AB的长.解析: a=1,b=,c=2,又直线l过点F2(2,0),且斜率k=tan45°=1...