1原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司专题强化训练三:多面体和球内外切问题技巧归纳1.多面体与球接、切问题求解策略(1)截面法:过球心及多面体中的特殊点(一般为接、切点)或线作截面,利用平面几何知识寻找几何体中元素间的关系.(2)补形法:“补形”成为一个球内接长方体,则利用4R2=a2+b2+c2求解.2.球的切、接问题的常用结论(1)长、宽、高分别为a,b,c的长方体的体对角线长等于外接球的直径,即=2R.(2)若直棱柱(或有一条棱垂直于一个面的棱锥)的高为h,底面外接圆半径为x,则该几何体外接球半径R满足R2=+x2.(3)外接球的球心在几何体底面上的投影,即为底面外接圆的圆心.(4)球(半径为R)与正方体(棱长为a)有以下三种特殊情形:一是球内切于正方体,此时2R=a;二是球与正方体的十二条棱相切,此时2R=a;三是球外接于正方体,此时2R=a.专题精选强化一、单选题1.(2022·重庆一中高一)长方体长宽高分别为3,4,12,那么该长方体外接球的表面积为()A.B.C.D.2.(2022·广西河池·高一)已知底面为正方形的直棱柱的侧棱垂直于底面,且所有棱的长都为6,顶点都在一个球面上,则该球的表面积为()A.B.C.D.3.(2022·全国·高一)已知三棱锥的顶点都在球O的球面上,是边长为2的等边三角形,球的表面积为,则三棱锥的体积的最大值为()A.B.C.D.4.(2021·全国·高一)某四棱锥的底面为正方形,顶点在底面的射影为正方形中心,该四棱锥内有一个半径为1的球,则该四棱锥的表面积最小值是()A.16B.8C.32D.242原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司5.(2021·广东茂名·高一期末)已知正四面体的表面积为,且、、,四点都在球的球面上,则球的体积为()A.B.C.D.6.(2021·福建·泉州科技中学高一期中)已知三棱锥的顶点都在球O的球面上,,,平面ABC,若该三棱锥的体积是,则球O的表面积是()A.B.C.D.7.(2021·浙江·宁波市北仑中学高一期中)古希腊数学家阿基米德是世界上公认的三位最伟大的数学家之一,其墓碑上刻着他认为最满意的一个数学发现,如图,一个“圆柱容球”的几何图形,即圆柱容器里放了一个球,该球顶天立地,四周碰边,在该图中,球的体积是圆柱体积的,并且球的表面积也是圆柱表面积的,若圆柱的表面积是,现在向圆柱和球的缝隙里注水,则最多可以注入的水的...