1.4生活中的优化问题举例1.教学目标知识与技能1.体会导数在解决实际问题中的作用,能解决利润最大、用料最省、效率最高等优化问题,2.形成求解优化问题的思路和方法。过程与方法1.通过逐步形成用到导数知识分析问题和解决问题,进一步培养学生发散思维能力。2.提高将实际问题转化为数学问题的能力。情感、态度、价值观培养学生用运动变化的辩证唯物主义思想处理数学问题地积极态度2.教学重点、难点教学重点利用导数解决生活中的一些优化问题。教学难点理解导数在解决实际问题时的作用,并利用其解决生活中的一些优化问题。3.教学用具多媒体4.教学过程教学过程设计1、复习导入【师】问题一:导数在研究函数中有哪些应用?问题二:联系函数在实际生活中的作用,你认为导数对于解决生活中的什么问题有什么作用呢?问题三:通过预习,我们把导数能解决的这些问题通常称为什么问题呢?【生】学生讨论回答【师】生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题.2、新知学习问题1:导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有几个方面?(1)与几何有关的最值问题;(2)与利润及其成本有关的最值问题;(3)效率最值问题。【生】学生讨论回答问题2:解决优化问题的方法有哪些?首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.【生】学生讨论回答问题3:解决优化问题的的步骤是怎样的?【生】学生讨论回答典例探究1海报版面尺寸的设计【例题1】学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128dm2,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸,才能使四周空心面积最小?【分析】先建立目标函数,然后利用导数求最值.【规范解答】设版心的高为xdm,则版心的宽为此时四周空白面积为因此,x=16是函数的极小值,也是最小值点。所以,当版心高为16dm,宽为8dm时,能使四周空白面积最小。答:当版心高为16dm,宽为8dm时,海报四周空白面积最小。【引申思考】在本题解法中,“是函数的极小值...