1高二数学《考点•题型•技巧》精讲与精练高分突破系列(人教A版选择性必修第二册)第四章:数列4.2.2等差数列的前n项和公式【考点梳理】考点一等差数列的前n项和公式已知量首项,末项与项数首项,公差与项数求和公式Sn=Sn=na1+d考点二等差数列前n项和的性质1.若数列{an}是公差为d的等差数列,则数列也是等差数列,且公差为.2.设等差数列{an}的公差为d,Sn为其前n项和,则Sm,S2m-Sm,S3m-S2m,…仍构成等差数列,且公差为m2d.3.若等差数列{an}的项数为2n,则S2n=n(an+an+1),S偶-S奇=nd,=.4.若等差数列{an}的项数为2n+1,则S2n+1=(2n+1)·an+1,S偶-S奇=-an+1,=.考点三等差数列{an}的前n项和公式的函数特征1.公式Sn=na1+可化成关于n的表达式:Sn=n2+n.当d≠0时,Sn关于n的表达式是一个常数项为零的二次函数式,即点(n,Sn)在其相应的二次函数的图象上,这就是说等差数列的前n项和公式是关于n的二次函数,它的图象是抛物线y=x2+x上横坐标为正整数的一系列孤立的点.2.等差数列前n项和的最值(1)在等差数列{an}中,当a1>0,d<0时,Sn有最大值,使Sn取得最值的n可由不等式组确定;当a1<0,d>0时,Sn有最小值,使Sn取到最值的n可由不等式组确定.(2)Sn=n2+n,若d≠0,则从二次函数的角度看:当d>0时,Sn有最小值;当d<0时,Sn有最大值.当n取最接近对称轴的正整数时,Sn取到最值.大重难点规律总结:(1)利用基本量求值:等差数列的通项公式和前n项和公式中有五个量a1,d,n,an和Sn,这五个量可以“知三求二”.一般是利用公式列出基本量a1和d的方程组,解出a1和d,便可解决问题.解题时注意整体代换的思想.(2)结合等差数列的性质解题:等差数列的常用性质:若m+n=p+q(m,n,p,qN*)∈,则am+an=ap+aq,常与求和公式Sn=结合使用.(3)等差数列前n项和Sn最大(小)值的情形①若a1>0,d<0,则Sn存在最大值,即所有非负项之和.②若a1<0,d>0,则Sn存在最小值,即所有非正项之和.(2)求等差数列前n项和Sn最值的方法①寻找正、负项的分界点,可利用等差数列性质或利用原创精品资源学科网独家享有版权,侵权必究!2或来寻找.②运用二次函数求最值.【题型归纳】题型一:等差数列前n项和的有关计算1.(2021·全国·高二课时练习)记Sn为等差数列{an}的前n项和,已知a1=-7,S3=-15.(1)求{an}的通项公式;(2)求Sn,并求Sn的最小值.2.(2021·全国·高二课时练习)在等差数列{an}中:(1)已知,求;(2)已...