数学第1讲分类加法计数原理与分步乘法计数原理高三一轮复习重难点题型考点一分类加法计数原理[题组练透]1.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.10解析:当a=0时,关于x的方程为2x+b=0,此时有序数对(0,-1),(0,0),(0,1),(0,2)均满足要求;当a≠0时,Δ=4-4ab≥0,ab≤1,此时满足要求的有序数对为(-1,-1),(-1,0),(-1,1),(-1,2),(1,-1),(1,0),(1,1),(2,-1),(2,0).综上,满足要求的有序数对共有13个.故选B.答案:B2.在所有的两位数中,个位数字大于十位数字的两位数的个数为________.解析:按十位数字分类,十位可为1,2,3,4,5,6,7,8,共分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,则共有8+7+6+5+4+3+2+1=36个两位数.答案:363.如图,从A到O有________种不同的走法(不重复过一点).解析:分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有A→B→O和A→C→O2种不同的走法;第三类,中间过两个点,有A→B→C→O和A→C→B→O2种不同的走法.由分类加法计数原理可得共有1+2+2=5种不同的走法.答案:54.若椭圆x2m+y2n=1的焦点在y轴上,且m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.解析:当m=1时,n=2,3,4,5,6,7,共6个;当m=2时,n=3,4,5,6,7,共5个;当m=3时,n=4,5,6,7,共4个;当m=4时,n=5,6,7,共3个;当m=5时,n=6,7,共2个.故共有6+5+4+3+2=20个满足条件的椭圆.答案:205.如果一个三位正整数如“a1a2a3”满足a1
a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为________.解析:若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).答案:240[解题技法]分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词、关键元素、关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.(3)分类时除了不能交叉重复外,...