第四节线段的垂直平分线(二)复习回顾定理定理线段的垂直平分线上的点到这条线段两个端点的距离相等.定理定理到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.在一个三角形中,分别作出三条边的垂直平分线,会有什么样的结果出现?利用尺规作三角形三条边的垂直平分线,当作完此题时你发现了什么?用心想一想,马到功成发现:三角形三边的垂直平分线交于一点.这一点到三角形三个顶点的距离相等.剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你是否发现同样的结论?与同伴交流.QPNMFECBAO证明结论:三角形三边的垂直平分线交于一点.用心想一想,马到功成已知:在△ABC中,设AB、BC的垂直平分线交于点O.求证:O点在AC的垂直平分线上.证明:连接AO,BO,CO. 点P在线段AB的垂直平分线上,∴OA=OB(线段垂直平分线上的点到线段两个端点的距离相等).同理OB=OC.∴OA=OC.∴O点在AC的垂直平分线上(到线段两个端点距离相等的点.在这条线段的垂直平分线上).∴AB、BC、AC的垂直平分线相交于点OCBAO定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。三角形三边的垂直平分线的性质定理1.分别作出直角三角形、锐角三角形、钝角三角形三边的垂直平分线,说明交点分别在什么位置.锐角三角形三边的垂直平分线交点在三角形内;直角三角形三边的垂直平分线交点在斜边上;钝角三角形三边的垂直平分线交点在三角形外.2.已知:△ABC中,AB=AC,AD是BC边上的中线,AB的垂直平分线交AD于O求证:OA=OB=OC.证明: AB=AC,AD是BC的中线,∴AD垂直平分BC(等腰三角形底边上的中线垂直于底边).又 AB的垂直平分线与交于点O∴OB=OC=OA(三角形三条边的垂直平分线交于一点,并且这一点到三个顶点的距离相等).DCBAO议一议(1)已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几个?所作出的三角形都全等吗?已知:三角形的一条边a和这边上的高h求作:△ABC,使BC=a,BC边上的高为h这样的三角形有无数多个.观察还可以发现这些三角形不都全等.1ADCBAah()DCBAah1ADCBAah1A议一议(2)已知等腰三角形的底边,你能用尺规作出等腰三角形吗?如果能,能作几个?所作出的三角形都全等吗?这样的等腰三角形也有无数多个.根据线段垂直平分线上的点到线段两个端点的距离相等,只要作底边的垂直平分线,取它上面除底边的中点外的任意一点,和底边的两个端点相连接,都可以得到一个等腰三角形.如图所...