1/510.4线段的垂直平分线(二)一、学生知识状况分析通过对前面相关内容的学习,学生对如何证明一个命题已经积累一些经验并掌握了必要的方法。但是要证明三角形三边垂直平分线交于一点对学生来说还是较抽象的,因此,教学时,教师对此不要操之过急,应逐步引导学生理解.二、教学任务分析在上一节课,学生已经掌握了线段垂直平分线的性质和判定定理,本节课的主要任务是性质和判定的应用。因此本节课的目标为:1.能够证明三角形三边垂直平分线交于一点2.经历猜想、探索,能够作出符合条件的三角形.3.经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力.体验解决问题的方法,发展实践能力和创新意识.4.学会与他人合作,并能与他人交流思维的过程和结果.教学重点、难点重点:①能够证明与线段垂直平分线相关的结论.②已知底边和底边上的高,能利用尺规作出等腰三角形.难点:证明三线共点。三、教学过程分析本节课设计了五个教学环节:第一环节:情境引入;第二环节:例题解析;第三环节:引申拓展;第四环节:动手操作;第五环节:随堂练习;第六环节:课时小结;第五环节:课后作业。1:情景引入活动内容:尺规作图作三条边的垂直平分线。活动目的:让学生利用自己的动手体会三类三角形三条边的垂直平分线交于一点的正确性。活动过程:2/5教师提问:“[利用尺规作三角形三条边的垂直平分线,当作完此题时你发现了什么?(教师可用多媒体演示作图过程)”“三角形三边的垂直平分线交于一点.”、“这一点到三角形三个顶点的距离相等.”等都是学生可以发现的直观性质。下面请同学们剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你是否发现同样的结论?与同伴交流.教师质疑:“这只是用我们的眼睛观察到的,看到的一定是真的吗?我们还需运用公理和已学过的定理进行推理证明,这样的发现才更有意义.”这节课我们来学习探索和线段垂直平分线有关的结论.上述活动中,教师要注意多画几种特殊的三角形让学生亲自体验和观察结论的正确性。2:例题解析(1)教师引导学生分析,寻找证明方法。我们要从理论上证明这个结论,也就是证明“三线共点”,但这是我们没有遇到过的.不妨我们再来看一下演示过程,或许你能从中受到启示.通过演示和启发,引导学生认同:“两直线必交于一点,那么要想证明‘“三线共点’,只要证第三条直线过这个交点或者说这个点在第三条直线上即可.”虽然我们已找到证明“三线共点”...