7.1两条直线的位置关系(1)一、七彩题1.(一题多解题)如图所示,三条直线AB,CD,EF相交于点O,∠AOF=3∠FOB,∠AOC=90°,求∠EOC的度数.二、知识交叉题2.(科内交叉题)一个角的补角与这个角的余角的和比平角少10°,求这个角.3.(科外交叉题)如图所示,当光线从空气射入水中时,光线的传播方向发生了改变,这就是光的折射现象.若∠1=42°,∠2=28°,则光的传播方向改变了______度.三、实际应用题4.如图所示是一个经过改造的台球桌面的示意图,图中4个角上的阴影部分分别表示4个入球袋.如果一个球按图中所示的方向被击出(假设用足够的力气击出,使球可以经过多次反射),那么该球最后落入哪个球袋?在图上画出被击的球所走路程.四、经典中考题5.(2007,济南,4分)已知:如图所示,AB⊥CD,垂足为点O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()1/4A.相等B.互余C.互补D.互为对顶角6.(2008,南通,3分)已知∠A=40°,则∠A的余角等于______.2/4参考答案一、1.解法一:因为∠FOB+∠AOF=180°,∠AOF=3∠FOB(已知),所以∠FOB+3∠FOB=180°(等量代换),所以∠FOB=45°,所以∠AOE=∠FOB=45°(对顶角相等),因为∠AOC=90°,所以∠EOC=∠AOC-∠AOE=90°-45°=45°.解法二:因为∠FOB+∠AOF=180°,∠AOF=3∠FOB,所以∠FOB+3∠FOB=180°,所以∠FOB=45°,所以∠AOF=3∠FOB=3×45°=135°,所以∠BOE=∠AOF=135°.又因为∠AOC=90°,所以∠BOC=180°-∠AOC=180°-90°=90°,所以∠EOC=∠BOE-∠BOC=135°-90°=45°.二、2.解:设这个角为x,则其补角为180°-x,余角为90°-x,根据题意,得(180°-x)+(90°-x)=180°-10°,解得x=50°,所以这个角的度数为50°.点拨:本题是互余,互补及平角的概念的一个交叉综合题,要理清各种关系,才能正确列出方程.3.14点拨:本题是对顶角的性质在物理学中的应用.三、4.解:落入2号球袋,如图所示.点拨:此题应与实际相联系,球被击中后在桌面上走的路线与台球桌面的边缘构成的角等于反弹后走的路线与台球桌面的边缘构成的角.四、5.B点拨:因为AB⊥CD于点O,所以∠BOC=90°.又CD与EF相交于点O,所以∠COE=2∠,3/4所以∠1+2=1+COE=BOC=90°∠∠∠∠,即∠1与∠2互余,故选B.6.50°点拨:∠A的余角为90°-A=90°-40°=50°∠.4/4