6.3一次函数的图象一、教学目标(1)能用“两点法”画出一次函数的图象(2)结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响.(3)通过操作、观察,培养学生动手和归纳的能力.(4)让学生通过直观感知、动手操作去经历、体会规律形成的过程.二、教学重点、难点用“两点法”画出一次函数图象是研究一次函数的性质的基础,是本节课重点.直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响,是本节课的难点.关键是通过学生的直观感知、动手操作、合作交流归纳其规律.三、教学方法采用自主探究--合作交流式教学,让学生动手操作,主动去探索,小组合作交流.而互动式教学将顾及到全体学生,让全体学生都各有所获.四、教学设计(一)设疑,导入新课这节课让我们一起来研究“一次函数的图象”.(板书)师:1.什么叫函数?在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.2.函数的表示方法有哪几种?(1)解析法(2)列表法(3)图象法3.同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗?形如y=kx+b的函数,(其中k、b为常数,k≠0).师:(同学们回答的都很好)那么一次函数的图象是什么形状呢?(二)自主探究,梳理归纳1.师:问(1)你们知道一次函数是什么形状吗?师:那就让我们一起做一做,看一看:如何作出一次函数y=2x+1的图象?要回答这个问题,必须弄清楚以下几点:(1)函数的图象是由无数个点构成的.(2)这些点在坐标系中是一对一对的有序实数.(3)此解析式实际上是一个二元一次方程,它的一对一对的x、y值可看作是图象上的点的坐标.(4)要找出它的某个点,实际上就是求出这个二元一次方程的一组解.(5)把x的值作为横坐标,y的值作为纵坐标.1/6(6)把函数作图问题转化为求方程的解的问题.2.活动:作一次函数y=2x+1的图象你认为一次函数的图象是什么形状?汇报:一次函数的图象是直线.师:所有的一次函数图象都是直线吗?师:那么一次函数y=kx+b(其中k、b为常数,k≠0),也可以称为直线y=kx+b(其中k、b为常数,k≠0).(板书)师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?活动小结1(1)函数的图象概念把一个函数的自变量x与因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做函数的图象.(2)作函数图象的一般步骤:列表.列出自变量和函数...