2.4.2抛物线的简单几何性质(2)2.4抛物线利用探照灯、汽车前灯的反光曲面等生活中的实物进行新课导入。在前一节课学习抛物线的基础上,继续学习抛物线的通径和焦半径,直线与抛物线的位置关系等等.激发学生的数学应用意识.运用类比的思想,类比椭圆、双曲线的性质学习抛物线的通径和焦半径,直线与抛物线的位置关系.例1是关于抛物线的证明问题;例2是探寻直线与抛物线的交点个数问题,运用根的判别式法;例3运用了设而不求和点差法。方程图形范围对称性顶点离心率y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)lFyxOlFyxOlFyxOx≥0yR∈x≤0yR∈xR∈y≥0y≤0xR∈lFyxO关于x轴对称关于x轴对称关于y轴对称关于y轴对称(0,0)e=1探照灯、汽车前灯的反光曲面,手电筒的反光镜面、太阳灶的镜面都是抛物镜面。抛物镜面:抛物线绕其对称轴旋转而成的曲面。灯泡放在抛物线的焦点位置上,通过镜面反射就变成了平行光束,这就是探照灯、汽车前灯、手电筒的设计原理。平行光线射到抛物镜面上,经镜面反射后,反射光线都经过抛物线的焦点,这就是太阳灶能把光能转化为热能的理论依据。抛物线的通径和焦半径1.通过焦点且垂直对称轴的直线,与抛物线相交于两点,连接这两点的线段叫做抛物线的通径。|PF|=x0+p/2xOyFP通径的长度:2PP越大,开口越开阔2.连接抛物线任意一点与焦点的线段叫做抛物线的焦半径。焦半径公式:),(00yx下面请大家推导出其余三种标准方程抛物线的焦半径公式。xyO3.相交(一个交点,两个交点).直线与抛物线的位置关系问题1:直线与抛物线有怎样的位置关系?1.相离;2.相切;与双曲线的情况一致把直线方程代入抛物线方程得到一元一次方程得到一元二次方程直线与抛物线的对称轴平行(重合)相交(一个交点)计算判别式>0=0<0相交相切相离问题2:如何判断直线与抛物线的位置关系?通过焦点的直线,与抛物线相交于两点,连接这两点的线段叫做抛物线的焦点弦。xOyFA焦点弦焦点弦公式:),(11yx下面请大家推导出其余三种标准方程抛物线的焦点弦公式。B),(22yx12pxx方程图形范围对称性顶点焦半径焦点弦的长度y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)lFyxOlFyxOlFyxOx≥0yR∈x≤0yR∈xR∈y≥0y≤0xR∈lFyxO12pxx12()pxx12pyy12()pyy02px02px02py02py关于x轴对称关于x轴对称关于y轴对称关于y轴对称(0,0)(0,0)(0,0)(0,0)xyOABDFl例1、过抛物线焦点F的直线交抛物线于A,B两点,通过...