本资料分享自千人教师QQ群323031380期待你的加入与分享300G资源等你来本资料分享自千人教师QQ群323031380期待你的加入与分享300G资源等你来2012-2021十年全国高考数学真题分类汇编圆锥曲线大题(精解精析)1.(2021年高考全国甲卷理科)抛物线C的顶点为坐标原点O.焦点在x轴上,直线l:交C于P,Q两点,且.已知点,且与l相切.(1)求C,的方程;(2)设是C上的三个点,直线,均与相切.判断直线与的位置关系,并说明理由.【答案】(1)抛物线,方程为;(2)相切,理由见解析解析:(1)依题意设抛物线,,所以抛物线的方程为,与相切,所以半径为,所以的方程为;(2)设若斜率不存在,则方程为或,若方程为,根据对称性不妨设,则过与圆相切的另一条直线方程为,此时该直线与抛物线只有一个交点,即不存在,不合题意;若方程为,根据对称性不妨设本资料分享自千人教师QQ群323031380期待你的加入与分享300G资源等你来本资料分享自千人教师QQ群323031380期待你的加入与分享300G资源等你来则过与圆相切的直线为,又,,此时直线关于轴对称,所以直线与圆相切;若直线斜率均存在,则,所以直线方程为,整理得,同理直线的方程为,直线的方程为,与圆相切,整理得,与圆相切,同理所以为方程的两根,,本资料分享自千人教师QQ群323031380期待你的加入与分享300G资源等你来本资料分享自千人教师QQ群323031380期待你的加入与分享300G资源等你来到直线的距离为:,所以直线与圆相切;综上若直线与圆相切,则直线与圆相切.【点睛】关键点点睛:(1)过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;(2)要充分利用的对称性,抽象出与关系,把的关系转化为用表示.2.(2021年高考全国乙卷理科)已知抛物线的焦点为,且与圆上点的距离的最小值为.(1)求;(2)若点在上,是的两条切线,是切点,求面积的最大值.【答案】(1);(2).解析:(1)抛物线的焦点为,,所以,与圆上点的距离的最小值为,解得;本资料分享自千人教师QQ群323031380期待你的加入与分享300G资源等你来本资料分享自千人教师QQ群323031380期待你的加入与分享300G资源等你来(2)抛物线的方程为,即,对该函数求导得,设点、、,直线的方程为,即,即,同理可知,直线的方程为,由于点为这两条直线的公共点,则,所以,点、的坐标满足方程,所以,直线的方程为,联立,可得,由韦达定理可得,,所以,,点到直线的距离为,所以,,,由...