选修2-22.3数学归纳法一、选择题1.用数学归纳法证明1+++…+1)时,第一步应验证不等式()A.1+<2B.1++<2C.1++<3D.1+++<3[答案]B[解析] n∈N*,n>1,∴n取第一个自然数为2,左端分母最大的项为=,故选B.2.用数学归纳法证明1+a+a2+…+an+1=(n∈N*,a≠1),在验证n=1时,左边所得的项为()A.1B.1+a+a2C.1+aD.1+a+a2+a3[答案]B[解析]因为当n=1时,an+1=a2,所以此时式子左边=1+a+a2.故应选B.3.设f(n)=++…+(n∈N*),那么f(n+1)-f(n)等于()A.B.C.+D.-[答案]D[解析]f(n+1)-f(n)=-=+-=-.4.某个命题与自然数n有关,若n=k(k∈N*)时,该命题成立,那么可推得n=k+1时该命题也成立.现在已知当n=5时,该命题不成立,那么可推得()A.当n=6时该命题不成立B.当n=6时该命题成立C.当n=4时该命题不成立D.当n=4时该命题成立[答案]C[解析]原命题正确,则逆否命题正确.故应选C.5.用数学归纳法证明命题“当n是正奇数时,xn+yn能被x+y整除”,在第二步的证明时,正确的证法是()A.假设n=k(k∈N*),证明n=k+1时命题也成立B.假设n=k(k是正奇数),证明n=k+1时命题也成立C.假设n=k(k是正奇数),证明n=k+2时命题也成立D.假设n=2k+1(k∈N),证明n=k+1时命题也成立[答案]C[解析] n为正奇数,当n=k时,k下面第一个正奇数应为k+2,而非k+1.故应选C.6.凸n边形有f(n)条对角线,则凸n+1边形对角线的条数f(n+1)为()1A.f(n)+n+1B.f(n)+nC.f(n)+n-1D.f(n)+n-2[答案]C[解析]增加一个顶点,就增加n+1-3条对角线,另外原来的一边也变成了对角线,故f(n+1)=f(n)+1+n+1-3=f(n)+n-1.故应选C.7.用数学归纳法证明“对一切n∈N*,都有2n>n2-2”这一命题,证明过程中应验证()A.n=1时命题成立B.n=1,n=2时命题成立C.n=3时命题成立D.n=1,n=2,n=3时命题成立[答案]D[解析]假设n=k时不等式成立,即2k>k2-2,当n=k+1时2k+1=2·2k>2(k2-2)由2(k2-2)≥(k-1)2-4⇔k2-2k-3≥0⇔(k+1)(k-3)≥0⇒k≥3,因此需要验证n=1,2,3时命题成立.故应选D.8.已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N*,都能使m整除f(n),则最大的m的值为()A.30B.26C.36D.6[答案]C[解析]因为f(1)=36,f(2)=108=3×36,f(3)=360=10×36,所以f(1),f(2),f(3)能被36整除,推测最大的m值为36.9.已知数列{an}的前n项和Sn=n2an(n≥2),而a1=...