带式输送机托辊故障检测方法武国平(国家能源集团准能集团有限责任公司,内蒙古鄂尔多斯017000)摘要:针对现有输煤传送机托辊故障检测方法存在识别精度较低、抗环境干扰能力较差、无法长期稳定运行等问题,提出了一种基于融合信号(TFM)及多输入一维卷积神经网络(MI−1DCNN)的输煤传送机托辊故障检测方法。首先,通过拾音器采集输煤传送机沿线托辊运行的音频信号,采用dB4小波无偏风险估计阈值降噪法对信号进行预处理,消除背景噪声,提高信噪比。然后,对降噪音频信号的时域、频域和梅尔频率倒谱系数(MFCC)及其一阶二阶差分系数进行归一化处理,并进行拼接,得到特征TFM。最后,将TFM输入到多尺度卷积核的MI−1DCNN模型,在网络通道末端进行特征融合,通过Softmax函数完成对正常托辊和故障托辊的分类识别。以某煤矿实际采集的输煤传送机托辊音频信号样本对TFM−MI−1DCNN模型进行试验,结果表明:故障托辊平均识别准确率达98.65%,较改进小波阈值降噪−反向传播−径向基函数网络、MFCC−K邻近方法−支持向量机的平均识别准确率分别提高了1.50%和1.03%。现场应用结果表明:该方法下故障托辊平均识别准确率为98.4%,说明该方法适用于现场应用。关键词:输煤传送机;智能巡检机器人;托辊;音频信号;小波阈值降噪;MFCC;多输入一维卷积神经网络中图分类号:TD634文献标志码:AFaultdetectionmethodforbeltconveyoridlerWUGuoping(CHNEnergyZhunnengEnergyGroupCo.,Ltd.,Ordos017000,China)Abstract:Theexistingfaultdetectionmethodsforbeltconveyoridlerhavetheproblemsoflowrecognitionprecision,pooranti-interferencecapabilityandinabilitytooperatestablyoveralongperiodoftime.Inordertosolvetheaboveproblems,afaultdetectionmethodforbeltconveyoridlerbasedontime-frequency-MFCC(TFM)andmulti-inputone-dimensionalconvolutionalneuralnetwork(MI-1DCNN)isproposed.Firstly,thepickupcollectstheaudiosignalofthecoalconveyoridlerrunningalongtheline.ThedB4waveletunbiasedriskestimationthresholdnoisereductionmethodisusedtopreprocessthesignaltoeliminatethebackgroundnoiseandimprovethesignal-to-noiseratio.Secondly,thetimedomain,frequencydomainandMelfrequencycepstrumcoefficient(MFCC),andthefirstandsecondorderdifferencecoefficientofthenoisereductionaudiosignalarenormalizedrespectively,andfinallyassemb...