ZPZ空间“距离”问题一、复习引入用空间向量解决立体几何问题的“三步曲”。(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(3)把向量的运算结果“翻译”成相应的几何意义。(化为向量问题)(进行向量运算)(回到图形)空间“距离”问题1.空间两点之间的距离根据两向量数量积的性质和坐标运算,利用公式或(其中),可将两点距离问题转化为求向量模长问题2aa222zyxa),,(zyxa例1:如图1:一个结晶体的形状为四棱柱,其中,以顶点A为端点的三条棱长都相等,且它们彼此的夹角都是60°,那么以这个顶点为端点的晶体的对角线的长与棱长有什么关系?A1B1C1D1ABCD图1解:如图1,设BADADAAAB,116011DAABAA化为向量问题依据向量的加法法则,11AAADABAC进行向量运算2121)(AAADABAC)(2112122AAADAAABADABAAADAB)60cos60cos60(cos21116所以6||1AC回到图形问题这个晶体的对角线的长是棱长的倍。1AC6思考:(1)本题中四棱柱的对角线BD1的长与棱长有什么关系?(2)如果一个四棱柱的各条棱长都相等,并且以某一顶点为端点的各棱间的夹角都等于,那么有这个四棱柱的对角线的长可以确定棱长吗?A1B1C1D1ABCD11BBBCBABD6012011BCBABBABC,其中分析:分析:1111DAABAABADxAAADABaAC,,设11AAADABAC则由)(211212221AAADAAABADABAAADABAC)cos3(23222xxa即axcos631∴这个四棱柱的对角线的长可以确定棱长。(3)本题的晶体中相对的两个平面之间的距离是多少?设AB=1(提示:求两个平行平面的距离,通常归结为求两点间的距离)A1B1C1D1ABCDH分析:面面距离点面距离.11HACHAA于点平面点作过解:.1的距离为所求相对两个面之间则HA111AAADABBADADAABA且由.上在ACH3360cos211)(22ACBCABAC.160cos60cos)(1111BCAAABAABCABAAACAA31||||cos111ACAAACAAACA36sin1ACA36sin111ACAAAHA∴所求的距离是。36问题:如何求直线A1B1到平面ABCD的距离?这个结论说明,平面外一点到平面的距离等于连结此点与平面上的任一点(常选择一个特殊点)的向量在平面的...