15.4.3正切函数的图像与性质(人教A高中数学必修第一册第五章)深圳高级中学东校区李迈一、教学目标1.理解并掌握正切函数的周期性、定义域、值域、奇偶性和单调性。并能够应用正切函数的图象和性质解决相关问题。2.会利用正切线及正切函数的性质作正切函数的图象。3.通过正切函数图像与性质的探究,培养学生数形结合和类比的思想方法。二、教学重难点1.教学重点:正切函数的周期性、定义域、值域、奇偶性和单调性2.教学难点:能够应用正切函数的图象和性质解决相关问题。三、教学过程1.创设情境,引发思考【类比联想情境】三角函数包含正弦函数、余弦函数、正切函数.我们已经学过正弦函数、余弦函数的图像与性质,那么根据正弦函数、余弦函数的图像与性质的由来,能否得到正切函数的图像与性质.【预设的答案】取点作图法,单位圆法,计算机演算法。【设计意图】创设数学情境,让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.2.提出问题,引发思考,小组讨论【活动预设】阅读课本《正切函数》该小节的内容,思考并完成以下问题1.正切函数图像是怎样的?2.类比正弦、余弦函数性质,通过观察正切函数图像可以得到正切函数有什么性质?【预设的答案】取点作图法;定义域,值域,单调性,奇偶性,周期性,对称性【设计意图】学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。3.新知探究,教师讲授21.1正切函数Rxxytan,且zkkx2图象:1.2.观察正切曲线,回答正切函数的性质:定义域:值域:R(-∞,+∞)最值:无最值渐近线:x=π2+kπ(k∈Z)周期性:最小正周期是奇偶性:奇函数单调性:增区间图像特征:无对称轴,对称中心:(kπ2,0)k∈Z【设计意图】在学生进行小组讨论之后,教师引导学生去探究出新的知识内容。4.初步应用,理解概念例1函数的周期为多少?一般地,函数的周期是什么?【预设的答案】3【设计意图】会求正切函数的周期例2比较下列两组数的大小:(1)(2)【预设的答案】(1)<(2)<【设计意图】比较两个同名三角函数值的大小,先利用诱导公式把两个角化为同一单调区间内的角,再利用函数的单调性比较.例3求满足下列条件的x的取值范围.(1)(2)(3)【预设的答案】(1)(2)(3)【设计意图】利用函数图像,已知值域求定义域例4(1)求函数的周期、定义域、单调区间;(2)解不等式:【预设的答案】(1)周期;定义域;4单调增区间:(2)【设计意图】解题技巧:(求单调区间的步骤)用...