14.5.2用二分法求方程的近似解(人教A版普通高中教科书数学必修第一册第四章)深圳第二外国语中学任立勇一、教学目标1.探索用二分法求方程近似解的思路.2.能借助计算工具用二分法求方程近似解.3.通过用二分法求方程的近似解,使学生体会函数零点与方程根之间的联系,初步形成用函数观点处理问题的意识.4.通过本节内容的学习,使学生体会“逐步逼进”的方法,提升学生数学抽象、逻辑推理、数学运算素养.二、教学重难点重点:利用二分法求方程的近似解;难点:利用二分法求方程的近似解.三、教学过程1.二分法的形成1.1创设情境,引发思考【实际情境】在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障,这是一条10km长的路线,如果沿着线路一小段一小段查找,困难很多.每查一个点要爬一次电线杆子,10km长的线路大约有200多根电线杆子.如图所示,他首先从中点C查,用随身带的话机向两端测试时,若发现AC段正常,则可断定故障在BC段,再到BC段中点D,这次若发现BD段正常,则故障在CD段,再到CD中点E来查.每查一次,可以把待查的线段缩减一半.2问题1:上述情景中,工人师傅是通过什么方法缩小故障范围的?【预设的答案】取中间、减半等。问题2:如果把故障可能发生的范围缩小在200m左右,至多需要爬几次电线杆子?【预设的答案】6【设计意图】通过实例让学生初步接触二分法,了解二分法的一般步骤,让学生感知“生活处处是数学”。1.2探究典例,形成概念活动:能否求出方程lnx+2x-6=0的近似解?【活动预设】让学生自由发言,教师不做判断。引导学生进一步观察,研探。【设计意图】为引入二分法及一般步骤做铺垫.一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)f(3)<0,所以零点在区间(2.5,3)内;再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.75)f(2.5)<0,所以零点在(2.5,2.75)内;由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为0.01时,由于∣2.5390...