27.2.1相似三角形的判定第1课时平行线分线段成比例1.了解相似比的定义;(重点)2.掌握平行线分线段成比例定理的基本事实以及利用平行线法判定三角形相似;(重点)3.应用平行线分线段成比例定理及平行线法判定三角形相似来解决问题.(难点)一、情境导入如图,在△ABC中,D为边AB上任一点,作DE∥BC,交边AC于E,用刻度尺和量角器量一量,判断△ADE与△ABC是否相似.二、合作探究探究点一:相似三角形的有关概念如图所示,已知△OAC∽△OBD,且OA=4,AC=2,OB=2,∠C=∠D,求:(1)△OAC和△OBD的相似比;(2)BD的长.解析:(1)由△OAC∽△OBD及∠C=∠D,可找到两个三角形的对应边,即可求出相似比;(2)根据相似三角形对应边成比例,可求出BD的长.解:(1) △OAC∽△OBD,∠C=∠D,∴线段OA与线段OB是对应边,则△OAC与△OBD的相似比为==;(2) △OAC∽△OBD,∴=,∴BD===1.方法总结:相似三角形的定义既是相似三角形的性质,也是相似三角形的判定方法.变式训练:见《学练优》本课时练习“课堂达标训练”第1题探究点二:平行线分线段成比例定理【类型一】平行线分线段成比例的基本事实如图,直线l1、l2、l3分别交直线l4于点A、B、C,交直线l5于点D、E、F,直线l4、l5交于点O,且l1∥l2∥l3,已知EF∶DF=5∶8,AC=24.(1)求的值;(2)求AB的长.第1页共3页解析:(1)根据l1∥l2∥l3推出=;(2)根据l1∥l2∥l3,推出==,代入AC=24求出BC即可求出AB.解:(1) l1∥l2∥l3,∴=.又 DF∶DF=5∶8,∴EF∶DE=5∶3,∴=;(2) l1∥l2∥l3,EF∶DF=5∶8,AC=24,∴==,∴BC=15,∴AB=AC-BC=24-15=9.方法总结:运用平行线分线段成比例定理时,一定要注意正确书写对应线段的位置.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型二】平行线分线段成比例的基本事实的推论如图所示,已知△ABC中,DE∥BC,AD=2,BD=5,AC=5,求AE的长.解析:根据DE∥BC得到=,然后根据比例的性质可计算出AE的长.解: DE∥BC,∴=,即=,∴AE=.方法总结:解题的关键是深入观察图形,准确找出图形中的对应线段,正确列出比例式.变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点三:相似三角形的引理【类型一】利用相似三角形的引理判定三角形相似如图,在▱ABCD中,E为AB延长线上的一点,AB=3BE,DE与BC相交于点F,请找出图中所有的相似三角形,并求出相应的相似比.解析:由平行四边形的性质可得:BC∥AD,AB...