2.2直接证明与间接证明2.2.1综合法和分析法1.结合已经学习过的数学实例,了解直接证明的两种最基本的方法:综合法和分析法.2.了解用综合法和分析法解决问题的思考特点和过程,会用综合法和分析法证明具体的问题.通过实例充分认识这两种证明方法的特点,认识证明的重要性.1.综合法.(1)定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.其一般表示形式是由因导果.(2)用P表示已知条件、已有的定义、定理、公理等,Q表示所要证明的结论,则综合法用框图表示为:→→→…→2.分析法.(1)定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等).这种证明的方法叫做分析法.其一般表示形式是执果索因.(2)用Q表示要证明的结论,则分析法可用框图表示为:→→→…→3.分析综合法.(1)定义:根据条件的结构特点去转化结论,得到中间结论Q′;根据结论的结构特点去转化条件,得到中间结论P′.若由P′可以推出Q′成立,就可以证明结论成立.这种证明方法称为分析综合法.(2)用P表示已知条件、定义、定理、公理等,用Q表示要证明的结论,则分析综合法可用框图表示为:→→…→←…←←1.设x,y∈R+,且x+y=6,则lgx+lgy的取值范围是(B)A.(-∞,lg6]B.(-∞,2lg3]C.[lg6,+∞)D.[2lg3,+∞)解析: x,y∈R+,x+y=6,∴2≤6,即0<xy≤9,∴lgxy≤lg9,即lgx+lgy≤2lg3.故选B.2.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证:<a”索的因应是(C)A.a-b>0B.a-c>0C.(a-b)(a-c)>0D.(a-b)(a-c)<0解析:<a⇐b2-ac<3a2⇐3a2+ac-(a+c)2>0⇐(2a+c)(a-c)>0⇐(a-b)(a-c)>0.故选C.3.已知f(x)=x2,则f′(3)的值为__________________.解析: f(x)=x2,∴f′(x)=2x,∴f′(3)=2×3=6.答案:64.当a∈________时,函数f(x)=x2-2(a-1)x+3在[5,+∞)上是增函数.解析:f(x)=x2-2(a-1)x+3在[5,+∞)上是增函数⇐a-1≤5⇐a≤6.答案:(-∞,6](1)分析题目的条件和结论,寻找已知与结论之间的有关数学公式、公理、定理、定义等,确定解决的初步思路;(2)整合所得信息进行推理论证,得出结论.欲证Q成立,只需证P1,即证P2,只需证P3,…,即证P,因为P成立,所以Q成立或运用逆向推理...