温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(十五)抛物线及其标准方程(25分钟60分)一、选择题(每小题5分,共25分)1.(2014·安徽高考)抛物线y=x2的准线方程是()A.y=-1B.y=-2C.x=-1D.x=-2【解析】选A.y=x2⇔x2=4y,所以抛物线的准线方程是y=-1.2.(2015·大连高二检测)点M(5,3)到抛物线y=ax2准线的距离为6,那么抛物线的方程是()A.y=12x2B.y=12x2或y=-36x2C.y=-36x2D.y=x2或y=-x2【解析】选D.分两类a>0,a<0可得y=x2,y=-x2.3.抛物线y2=ax(a≠0)的焦点到其准线的距离是()A.B.C.|a|D.-【解析】选B.因为y2=ax,所以p=,即焦点到准线的距离为.故选B.4.探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯口的直径为60cm,灯深40cm,则抛物线的标准方程可能是()A.y2=xB.y2=xC.x2=-yD.x2=-y【解析】选C.如果设抛物线的方程为y2=2px(p>0),则抛物线过点(40,30),302=2p×40,2p=,所以抛物线的方程应为y2=x,所给选项中没有y2=x,但方程x2=-y中的“2p”的值为,所以选项C符合题意.5.(2015·重庆高二检测)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为()A.2B.2C.2D.4【解题指南】由|PF|=4及抛物线的定义求出点P的坐标,进而求出面积.【解析】选C.抛物线C的准线方程为x=-,焦点F(,0),由|PF|=4及抛物线的定义知,P点的横坐标xP=3,从而yP=±2,所以=|OF|·|yP|=××2=2.二、填空题(每小题5分,共15分)6.(2015·邢台高二检测)若点P到直线y=-1的距离比它到点(0,3)的距离小2,则点P的轨迹方程是________.【解析】由题意可知点P到直线y=-3的距离等于它到点(0,3)的距离,故点P的轨迹是以点(0,3)为焦点,以y=-3为准线的抛物线,且p=6,所以其标准方程为x2=12y.答案:x2=12y7.若抛物线y2=-2px(p>0)上有一点M,其横坐标为-9,它到焦点的距离为10,则点M的坐标为________.【解析】由抛物线方程y2=-2px(p>0),得其焦点坐标为F(-,0),准线方程为x=,设点M到准线的距离为d,则d=|MF|=10,即-(-9)=10,所以p=2,故抛物线方程为y2=-4x.将M(-9,y)代入抛物线方程,得y=±6,所以M(-9,6)或M(-9,-6).答案:(-9,-6)或(-9,6)【补偿训练】(2015·皖南八校联考)若抛物线y2=2x上一点M到坐标原点O的距离为,则点M到抛物线焦点的距离为________.【解析】设M(x,y),则由得x2+2x-3=0.解得x=1或x=-3(舍).所以点M到抛物线焦点的距离d=1-=.答案:8.已...