2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质1.理解直线和平面垂直、平面与平面垂直的性质定理,并能用文字、符号和图形语言描述定理.(重点)2.能应用线面垂直、面面垂直的性质定理证明相关问题.(重点、难点)3.理解“平行”与“垂直”之间的相互转化.(易错点)[基础·初探]教材整理1直线与平面垂直的性质定理阅读教材P70的内容,完成下列问题.文字语言垂直于同一个平面的两条直线平行符号语言⇒a∥b图形语言判断(正确的打“√”,错误的打“×”)(1)垂直于同一条直线的两个平面互相平行.()(2)垂直于同一平面的两条直线互相平行.()(3)一条直线在平面内,另一条直线与这个平面垂直,则这两条直线互相垂直()【解析】由线面垂直的定义和性质可知(1)、(2)、(3)均正确.【答案】(1)√(2)√(3)√教材整理2平面与平面垂直的性质定理阅读教材P71“思考”以下至P72“例4”以上的内容,完成下列问题.文字语言两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.符号语言⇒a⊥β图形语言在长方体ABCDA1B1C1D1的棱AB上任取一点E,作EF⊥A1B1于F,则EF与平面A1B1C1D1的关系是()A.平行B.EF⊂平面A1B1C1D1C.相交但不垂直D.相交且垂直D[在长方体ABCDA1B1C1D1中,平面A1ABB1⊥平面A1B1C1D1且平面A1ABB1∩平面A1B1C1D1=A1B1,又EF⊂面A1ABB1,EF⊥A1B1,∴EF⊥平面A1B1C1D1,答案D正确.][小组合作型]线面垂直性质定理的应用如图2331所示,在正方体ABCDA1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.图2331求证:(1)MN∥AD1;(2)M是AB的中点.【精彩点拨】(1)要证线线平行,则先证线面垂直,即证AD1⊥平面A1DC.(2)可证ON=AM,ON=AB.【自主解答】(1) ADD1A1为正方形,∴AD1⊥A1D.又 CD⊥平面ADD1A1.∴CD⊥AD1. A1D∩CD=D,∴AD1⊥平面A1DC.又 MN⊥平面A1DC,∴MN∥AD1.(2)连接ON,在△A1DC中,A1O=OD,A1N=NC.∴ON綊DC綊AB,∴ON∥AM.又 MN∥OA,∴四边形AMNO为平行四边形,∴ON=AM. ON=AB,∴AM=AB,∴M是AB的中点.1.直线与平面垂直的性质定理是线线、线面垂直以及线面、面面平行的相互转化的桥梁,因此必须熟练掌握这些定理,并能灵活地运用它们.2.当题中垂直条件很多,但又需证平行关系时,就要考虑垂直的性质定理,从而完成垂直向平行的转化.[再练一题]1.如图2332,已知平面α∩平面β=l,EA⊥α,垂足为A,EB⊥β,垂足为B,直线a⊂β,a⊥AB.求证:a∥l.图2332【证明】因为EA⊥α,α∩β=l,即l...