课时跟踪检测(三十一)直线与平面垂直的性质层级(一)“四基”落实练1.在正方体ABCDA1B1C1D1中,直线l(与直线BB1不重合)⊥平面A1C1,则()A.B1B⊥lB.B1B∥lC.B1B与l异面但不垂直D.B1B与l相交但不垂直解析:选B因为B1B⊥平面A1C1,又因为l⊥平面A1C1,所以l∥B1B.故选B.2.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β解析:选C m∥n,m⊥α,则n⊥α,故选C.3.如图,▱ADEF的边AF⊥平面ABCD,且AF=2,CD=3,则CE=()A.2B.3C.D.解析:选D因为四边形ADEF为平行四边形,所以AF∥DE且AF=DE.因为AF⊥平面ABCD,所以DE⊥平面ABCD.所以DE⊥DC.因为AF=2,所以DE=2.又CD=3,所以CE===.4.如图,α∩β=l,点A,C∈α,点B∈β,且BA⊥α,BC⊥β,那么直线l与直线AC的关系是()A.异面B.平行C.垂直D.不确定解析:选C BA⊥α,α∩β=l,l⊂α,∴BA⊥l.同理BC⊥l.又BA∩BC=B,∴l⊥平面ABC. AC⊂平面ABC,∴l⊥AC.故选C.5.已知m,n为异面直线,m⊥平面α,n⊥平面β,直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α∥β且l⊥βC.α与β相交,且交线与l垂直D.α与β相交,且交线与l平行解析:选D若α∥β,则由m⊥平面α,n⊥平面β,可得m∥n,这与m,n是异面直线矛盾,故α与β相交.设α∩β=a,过空间内一点P,作m′∥m,n′∥n,m′与n′相交,m′与n′确定的平面为γ.因为l⊥m,l⊥n,所以l⊥m′,l⊥n′,所以l⊥γ.因为m⊥α,n⊥β,所以m′⊥α,n′⊥β,所以a⊥m′,a⊥n′,所以a⊥γ.又因为l⊄α,l⊄β,所以l与a不重合.所以l∥a.综上知,选D.6.线段AB在平面α的同侧,A,B到α的距离分别为3和5,则AB的中点到α的距离为________.解析:如图,设AB的中点为M,分别过A,M,B向α作垂线,垂足分别为A1,M1,B1,则由线面垂直的性质可知,AA1∥MM1∥BB1,四边形AA1B1B为直角梯形,AA1=3,BB1=5,MM1为其中位线,∴MM1=4.答案:47.如图,∠BCA=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中:(1)与PC垂直的直线有________;(2)与AP垂直的直线有________.解析:(1)因为PC⊥平面ABC,AB,AC,BC⊂平面ABC,所以PC⊥AB,PC⊥AC,PC⊥BC.(2)∠BCA=90°即BC⊥AC,又BC⊥PC,AC∩PC=C,所以BC⊥平面PAC.因为AP⊂平面PAC,所以BC⊥AP.答案:(1)AB,AC...