1/3专题五用锐角三角函数解航海问题航海问题主要包括求航行的时间、求航行速度、判断是否有触礁危险等,是考试中的热点问题.解决航行问题的关键是从实际问题中构建一个或两个直角三角形,通过三角函数直接解决或根据图形中的数量关系建立方程解决.例1如图1,灯塔A周围1000米水域内有礁石,一舰艇由西向东航行,在O处测得灯塔A在北偏东74°方向线上,这时O,A相距4200米,如果不改变航向,此舰艇是否有触礁的危险?分析:要判断舰艇是否有触礁的危险,关键比较点A到正东方向的距离与1000米的大小,因此,需过点A向正东方向引垂线,转化为直角三角形中的问题.解:如图1,过点A作AB与正东方向线垂直,垂足为B.在Rt△AOB中,OA=4200,∠AOB=90°-74°=16°.AB=AO·sin∠AOB=4200·sin16°=4200×0.2756≈1158(米).因为1158>1000,所以此舰艇按原航向继续航行没有触礁的危险.说明:本题是一道比较简单的航行问题,不仅要能从实际问题中构造出直角三角形,而且还要注意一些解题技巧,如能用乘法的运算的,不用除法,能用正弦计算的,不用余弦.例2如图2,某船以每小时36海里的速度向正东方向航行,在点A测得某岛C在北偏东60°方向上,航行半小时后到达点B,测得该岛在北偏东30°方向上,已知该岛周围16海里内有暗礁.(1)试说明点B是否在暗礁区域外?(2)若继续向东航行有无触礁危险?请说明理由.分析:要判断点B是否在暗礁区域外.则需要计算BC的长度,看其长度是否大于16海里,若BC>16海里,则点B在暗礁区域外;要判断继续向东航2/3行有无触礁危险,则需要计算船到岛C的最短距离,看是否小于16海里.若小于16海里,则有触礁的危险.为此,需要构造直角三角形解决.解:(1)过点B作BD∥AE,交AC于点D.因为AB=36×0.5=18(海里),∠ADB=60°,∠DBC=30°,所以∠ACB=30°.又∠CAB=30°,所以BC=AB.即BC=AB=18>16.所以点B在暗礁区域外.(2)过点C作CH⊥AB,垂足为H,在Rt△CHB中,∠BCH=30°,令BH=x,则CH=x.在Rt△ACH中,∠CAH=30°,所以.因为,所以.解得.所以.所以船继续向东航行有触礁的危险.说明:有无触礁问题是航海中的热点,也是中考试题中经常出现的试题.解决此类问题需要正确理解题意,从实际问题构建直角三角形模型.专题训练:1.如图3,一艘船向正东方向航行,在B处测得有一灯塔在它的北偏东30°,距离为72海里的A处.当行至C处测得灯塔恰好在它的正北方向,求此时它与灯塔的距离AC(计算结果精确到0.1海里)....