1学科网(北京)股份有限公司学科网(北京)股份有限公司期末高频考点第01讲:平面向量的基础知识和线性运算高频考点梳理考点一.向量的有关概念名称定义备注向量既有大小,又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为0的向量;其方向是任意的记作0单位向量长度等于1个单位的向量非零向量a的单位向量为±平行向量方向相同或相反的非零向量0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为0考点二.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0(1)λ(μa)=(λμ)a;(2)(λ+μ)a=λa+μa;(3)λ(a+b)=λa+λb2学科网(北京)股份有限公司学科网(北京)股份有限公司考点四:.共线向量定理向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使b=λa.1.平面向量基本定理如果e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.考点五.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A(x1,y1),B(x2,y2),则AB=(x2-x1,y2-y1),|AB|=.3.平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中b≠0.a、b共线⇔x1y2-x2y1=0.【知识拓展】1.若a与b不共线,λa+μb=0,则λ=μ=0.2.设a=(x1,y1),b=(x2,y2),如果x2≠0,y2≠0,则a∥b⇔=.3学科网(北京)股份有限公司学科网(北京)股份有限公司考点六.向量的夹角已知两个非零向量a和b,作OA=a,OB=b,则∠AOB就是向量a与b的夹角,向量夹角的范围是:[0,π].考点七:.平面向量的数量积定义设两个非零向量a,b的夹角为θ,则数量|a||b|·cosθ叫做a与b的数量积,记作a·b投影|a|c...