1原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司9.3.2&9.3.3向量的坐标表示和运算向量平行的坐标表示【考点梳理】考点一:平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.考点二:平面向量的坐标表示1.在平面直角坐标系中,设与x轴、y轴方向相同的两个单位向量分别为i,j,取{i,j}作为基底.对于平面内的任意一个向量a,由平面向量基本定理可知,有且只有一对实数x,y,使得a=xi+yj.平面内的任一向量a都可由x,y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y).,在直角坐标平面中,i=(1,0),j=(0,1),0=(0,0).考点三平面向量加、减运算的坐标表示设a=(x1,y1),b=(x2,y2),数学公式文字语言表述向量加法a+b=(x1+x2,y1+y2)两个向量和的坐标分别等于这两个向量相应坐标的和向量减法a-b=(x1-x2,y1-y2)两个向量差的坐标分别等于这两个向量相应坐标的差已知点A(x1,y1),B(x2,y2),那么向量AB=(x2-x1,y2-y1),即任意一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标.考点四平面向量数乘运算的坐标表示已知a=(x,y),则λa=(λx,λy),即:实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.考点五平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中b≠0.,则a,b共线的充要条件是存在实数λ,使a=λb.如果用坐标表示,可写为(x1,y1)=λ(x2,y2),当且仅当x1y2-x2y1=0时,向量a,b(b≠0)共线.注意:向量共线的坐标形式极易写错,如写成x1y1-x2y2=0或x1x2-y1y2=0都是不对的,因此要理解并熟记这一公式,可简记为:纵横交错积相减.2原创精品资源学科网独家享有版权,侵权必究!学科网(北京)股份有限公司学科网(北京)股份有限公司考点六:平面向量数量积的坐标表示设非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.则a·b=x1x2+y1y2.(1)若a=(x,y),则|a|2=x2+y2或|a|=.若表示向量a的有向线段的起点和终点的坐标分别为(x1,y1),(x2,y2),则a=(x2-x1,y2-y1),|a|=.(2)a⊥b⇔x1x2+y1y2=0.(3)cosθ==.技巧:向量夹角问题的方法及注意事项(1)求解方法:由cosθ==直接求出cosθ.(2)注意事项:利用三角函数值cosθ求θ的值时,应注意角θ的取值范围是0°≤θ≤180°.利用cosθ=判断θ的值时,要注意cosθ<0时,有两种情况:一是θ是钝角,二是θ为180°;cosθ...