14.5.3函数模型的应用(第一课时)(人教A版普通高中教科书数学必修第一册第四章)深圳第二外国语学校随倩倩一、教学目标1.能够认识数学模型的含义,利用已知的函数模型解决实际问题;2.体会求解模型的过程,初步体验数学建模的基本步骤,能够正确认识数学求解的结论与实际问题结果的差异;3.感悟数学的科学价值、应用价值,提升数据分析与数学建模核心素养.二、教学重难点重点:利用已知的函数模型解决实际问题.难点:对于碳14半衰期及衰减率的理解及验证问题中的数据与所提供的数学模型是否吻合.三、教学过程1.情境引入1.1创设情境,引发思考例3人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为制定一系列相关政策提供依据,早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766-1834)就提出了自然状态下的人口增长模型:,其中t表示经过的时间,表示t=0时的人口数,r表示人口的年平均增长率.(1)根据国家统计局网站公布的数据,我国1950年末、1959年末的人口总数分别为55196万和67207万,根据这些数据,用马尔萨斯人口增长模型建立我国在1950~1959年期间的具体人口增长模型.(2)利用(1)中的模型计算1951~1958年各年末的人口总数.查阅国家统计局网站公布的我国在1951~1958年间各年末的实际人口总数,检验所得模型与实际人口数据是否相符.(3)以(1)中的模型作预测,大约在什么时候我国人口总数达到13亿?2.例题讲解2.1问题串引导,体会建模过程问题1:用马尔萨斯人口增长模型建立具体人口增长模型,要确定其中的哪些量?2【预设答案】人口初始量及年平均增长率.追问1:我国自1950年起的人口增长模型中人口初始量是多少?【预设答案】依题意是1950年末的人口总数55196万.追问2:如果1950年为初始年记作,1959年是经过了几年,?【预设答案】1959年是经过了9年,.追问3:如何计算1950年-1959年的年平均增长率?【预设答案】根据已知得,,,利用人口增长模型可以求出年平均增长率.解:(1)设1950年至1959年我国各年人口增长率为,由,由计算工具得我国1950年至1959年期间人口增长率.已知,则我国1950年至1959年期间人口增长模型为.【设计意图】数学建模是为了解决实际问题,在2021年全国第七次人口普查的背景下借助人口增长这一实例,让学生感受“数学建模”是非常具有现实意义的,有科学价值.问题2:所得模型与实际人口数据是否相符?【预设答案】利用我们确定的人口增长模型求得我国1950年至1959年期间各年末...