18.6.2直线与平面垂直(第一课时)(人教A版普通高中教科书数学必修第二册第八章)梅林中学梁玉鑫一、教学目标1.理解直线与平面垂直的意义,理解点到平面的距离、直线与平面成角的概念;2.探索直线与平面垂直的判定定理,能应用判定定理证明直线和平面垂直的简单问题,能求简单的直线与平面所成的角;3.在探索直线与平面垂直判定定理的过程中发展合情推理能力、感悟和体验“空间问题转化为平面问题”“线面垂直转化为线线垂直”,进一步感悟数学中以“化繁为简”的转化思想.二、教学重难点重点:1.对直线与平面垂直的定义和判定定理的理解难点:1.概括线面垂直的定义和判定定理时如何将“线面垂直”转化为“线线垂直”2.求直线和平面所成角时,直线的射影的寻找学生初接触会有点难度.三、教学过程1.复习引入回顾直线和平面的位置关系如下图1:【设计意图】由复习旧知可以知道,直线与平面垂直是直线与平面相交关系中的一种,为后续特别是线面角作铺垫.2.观察归纳,形成概念2.1创设情境,引发思考问题1:在日常生活中,我们对直线与平面垂直有很多感性认识,比如,图中旗杆与地面的垂直关系,还有书脊与桌面的垂直关系,给我们以直线与平面垂直的形象.那么什么叫做直线与平面垂直呢?【设计意图】列举生活中的例子,使学生对直线与平面垂直的概念获得一定的感性认识,化抽象为具体.然后再应到学生概括出定义.图122.2归纳概括,得出定义问题2:能否把直观的形象数学化?用确切的数学语言刻画直线与平面垂直思考:(1)书脊AB与桌面上经过B点的直线有什么关系?(2)书脊AB与桌面上不过B点的直线有什么关系?(3)书脊AB与桌面上的任意直线有什么关系?追问1:怎么理解“任意”?结论:直线AB垂直于平面内的任意一条直线,那么它就垂直于这个平面.追问2:可以用“无数”代替“任意”吗?直线与平面垂直的定义:如果一条直线l垂直于平面α内的任意一条直线,我们就说直线l与平面α互相垂直.记作:【设计意图】这里是对直线垂直于平面定义的形成过程,结合几何直观感知,就能够在问题的引导下获得思路,利用转化的思想归纳出线面垂直的定义,并让学生体会到定义的本质是直线与直线垂直;强调直线要与平面内的任意直线都垂直,不等于无数.并规范表达,感受数学思维的严密.2.3知识拓展:点到平面距离的定义:过点P作直线PO垂直于平面α,垂足为O,垂线段PO长度就是点P到平面α的距离.【活动预设】教师提出问题,师生共同探讨,直观感知和操作确认“过一点垂直...