高考专题突破五高考中的解析几何问题第1课时范围、最值问题题型一范围问题例1设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.解(1)设F(c,0),由+=,即+=,可得a2-c2=3c2.又a2-c2=b2=3,所以c2=1,因此a2=4.所以椭圆的方程为+=1.(2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).设B(xB,yB),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2或x=.由题意得xB=,从而yB=.由(1)知,F(1,0),设H(0,yH),有FH=(-1,yH),BF=.由BF⊥HF,得BF·FH=0,所以+=0,解得yH=.因此直线MH的方程为y=-x+.设M(xM,yM),由方程组消去y,解得xM=.在△MAO中,由∠MOA≤∠MAO,得MA≤MO,即(xM-2)2+y≤x+y,化简,得xM≥1,即≥1,解得k≤-或k≥.所以直线l的斜率的取值范围为∪.思维升华解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.跟踪训练1已知椭圆C:+=1(a>b>0)与双曲线-y2=1的离心率互为倒数,且直线x-y-2=0经过椭圆的右顶点.(1)求椭圆C的标准方程;(2)设不过原点O的直线与椭圆C交于M,N两点,且直线OM,MN,ON的斜率依次成等比数列,求△OMN面积的取值范围.解(1) 双曲线的离心率为,∴椭圆的离心率e==.又 直线x-y-2=0经过椭圆的右顶点,∴右顶点为点(2,0),即a=2,c=,b=1,∴椭圆方程为+y2=1.(2)由题意可设直线MN的方程为y=kx+m(k≠0,m≠0),M(x1,y1),N(x2,y2).联立消去y,并整理得(1+4k2)x2+8kmx+4(m2-1)=0,则x1,2=,所以x1+x2=-,x1x2=,于是y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2.又直线OM,MN,ON的斜率依次成等比数列,故·==k2,则-+m2=0.由m≠0得k2=,解得k=±.又由Δ=64k2m2-16(1+4k2)(m2-1)=16(4k2-m2+1)>0,得0