第2课时定点、定值问题题型一定点问题例1已知椭圆+=1(a>b>0)过点(0,1),其长轴、焦距和短轴的长的平方依次成等差数列.直线l与x轴正半轴和y轴分别交于点Q,P,与椭圆分别交于点M,N,各点均不重合且满足PM=λ1MQ,PN=λ2NQ.(1)求椭圆的标准方程;(2)若λ1+λ2=-3,试证明:直线l过定点,并求此定点.解(1)设椭圆的焦距为2c,由题意知b=1,且(2a)2+(2b)2=2(2c)2,又a2=b2+c2,∴a2=3.∴椭圆的标准方程为+y2=1.(2)由题意设P(0,m),Q(x0,0),M(x1,y1),N(x2,y2),设l方程为x=t(y-m),由PM=λ1MQ知(x1,y1-m)=λ1(x0-x1,-y1),∴y1-m=-y1λ1,由题意y1≠0,∴λ1=-1.同理由PN=λ2NQ知λ2=-1. λ1+λ2=-3,∴y1y2+m(y1+y2)=0,①联立得(t2+3)y2-2mt2y+t2m2-3=0,∴由题意知Δ=4m2t4-4(t2+3)(t2m2-3)>0,②y1,2=,∴y1+y2=,y1y2=,③③代入①得t2m2-3+2m2t2=0,∴(mt)2=1,由题意mt<0,∴mt=-1,满足②,得直线l的方程为x=ty+1,过定点(1,0),即Q为定点.思维升华圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.跟踪训练1已知焦距为2的椭圆C:+=1(a>b>0)的右顶点为A,直线y=与椭圆C交于P,Q两点(P在Q的左边),Q在x轴上的射影为B,且四边形ABPQ是平行四边形.(1)求椭圆C的方程;(2)斜率为k的直线l与椭圆C交于两个不同的点M,N.①若直线l过原点且与坐标轴不重合,E是直线3x+3y-2=0上一点,且△EMN是以E为直角顶点的等腰直角三角形,求k的值;②若M是椭圆的左顶点,D是直线MN上一点,且DA⊥AM,点G是x轴上异于点M的点,且以DN为直径的圆恒过直线AN和DG的交点,求证:点G是定点.(1)解由题意可得2c=2,即c=,设Q,因为四边形ABPQ为平行四边形,PQ=2n,AB=a-n,所以2n=a-n,n=,则+=1,解得b2=2,a2=b2+c2=4,可得椭圆C的方程为+=1.(2)①解将直线y=kx(k≠0)代入椭圆方程,可得(1+2k2)x2=4,解得x=±,可设M,由E是3x+3y-2=0上一点,可设E,E到直线kx-y=0的距离为d=,因为△EMN是以E为直角顶点的等腰直角三角形,所以OE⊥MN,OM=d,即有=-,①=,②由①得m=(k≠1),代入②式,化简整理可得7k2-18k+8=0,解得k=2或.②证明由M(-2,0),可得直线MN的方程为y=k(x+2)(k≠0),...