高考专题突破五高考中的解析几何问题第1课时范围、最值问题题型一范围问题例1设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.解(1)设F(c,0),由+=,即+=,可得a2-c2=3c2.又a2-c2=b2=3,所以c2=1,因此a2=4.所以椭圆的方程为+=1.(2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).设B(xB,yB),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2或x=.由题意得xB=,从而yB=.由(1)知,F(1,0),设H(0,yH),有FH=(-1,yH),BF=.由BF⊥HF,得BF·FH=0,所以+=0,解得yH=.因此直线MH的方程为y=-x+.设M(xM,yM),由方程组消去y,解得xM=.在△MAO中,由∠MOA≤∠MAO,得MA≤MO,即(xM-2)2+y≤x+y,化简,得xM≥1,即≥1,解得k≤-或k≥.所以直线l的斜率的取值范围为∪.思维升华解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.跟踪训练1(2018·浙江)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.(1)证明设P(x0,y0),A,B.因为PA,PB的中点在抛物线上,所以y1,y2为方程2=4·,即y2-2y0y+8x0-y=0的两个不同的实根.所以y1,2=,所以y1+y2=2y0,所以PM垂直于y轴.(2)解由(1)可知所以PM=(y+y)-x0=y-3x0,|y1-y2|=2.所以△PAB的面积S△PAB=PM·|y1-y2|=.因为x+=1(-1≤x0<0),所以y-4x0=-4x-4x0+4∈[4,5],所以△PAB面积的取值范围是.题型二最值问题命题点1利用三角函数有界性求最值例2过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是坐标原点,则AF·BF的最小值是________.答案4解析设直线AB的倾斜角为θ,可得AF=,BF=,则AF·B...