第2课时定点、定值问题题型一定点问题例1已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3,P4中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.(1)解由于P3,P4两点关于y轴对称,故由题设知椭圆C经过P3,P4两点.又由+>+知,椭圆C不经过点P1,所以点P2在椭圆C上.因此解得故椭圆C的方程为+y2=1.(2)证明设直线P2A与直线P2B的斜率分别为k1,k2.如果l与x轴垂直,设l:x=t,由题设知t≠0,且|t|<2,可得A,B的坐标分别为,,则k1+k2=-=-1,得t=2,不符合题设.从而可设l:y=kx+m(m≠1).将y=kx+m代入+y2=1,得(4k2+1)x2+8kmx+4m2-4=0.由题设可知Δ=16(4k2-m2+1)>0.设A(x1,y1),B(x2,y2),则x1,2=,所以x1+x2=-,x1x2=.而k1+k2=+=+=.由题设知k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0.即(2k+1)·+(m-1)·=0,解得k=-.当且仅当m>-1时,Δ>0,于是l:y=-x+m,即y+1=-(x-2),所以l过定点(2,-1).思维升华圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.跟踪训练1已知焦距为2的椭圆C:+=1(a>b>0)的右顶点为A,直线y=与椭圆C交于P,Q两点(P在Q的左边),Q在x轴上的射影为B,且四边形ABPQ是平行四边形.(1)求椭圆C的方程;(2)斜率为k的直线l与椭圆C交于两个不同的点M,N.①若直线l过原点且与坐标轴不重合,E是直线3x+3y-2=0上一点,且△EMN是以E为直角顶点的等腰直角三角形,求k的值;②若M是椭圆的左顶点,D是直线MN上一点,且DA⊥AM,点G是x轴上异于点M的点,且以DN为直径的圆恒过直线AN和DG的交点,求证:点G是定点.(1)解由题意可得2c=2,即c=,设Q,因为四边形ABPQ为平行四边形,PQ=2n,AB=a-n,所以2n=a-n,n=,则+=1,解得b2=2,a2=b2+c2=4,可得椭圆C的方程为+=1.(2)①解将直线y=kx(k≠0)代入椭圆方程,可得(1+2k2)x2=4,解得x=±,可设M,由E是3x+3y-2=0上一点,可设E,E到直线kx-y=0的距离为d=,因为△EMN是以E为直角顶点的等腰直角三角形,所以OE⊥MN,OM=d,即有=-,①=,②由①得m=(k≠1),代入②式,化简整理可得7k2-18k+8=0,解得k=2或.②证明由M(-2,0),可得直线MN的方...