13.3等腰三角形/13.3等腰三角形13.3.1等腰三角形(第1课时)人教版数学八年级上册13.3等腰三角形/导入新知腰腰顶角底角底角底边我们知道有两边相等的三角形叫等腰三角形。13.3等腰三角形/导入新知请同学们按下面的要求操作。如图,把一张长方形的纸按图中虚线对折,然后沿着虚线剪开,再把它展开,得到一个等腰三角形,通过折叠你发现了等腰三角形的那些性质?13.3等腰三角形/1.探索并掌握等腰三角形的两个性质.2.会运用等腰三角形的概念和性质解决有关问题.素养目标13.3等腰三角形/把一张长方形的纸按图中的虚线对折,并剪去阴影部分(一个直角三角形),再把得到的直角三角形展开,得到的三角形ABC有什么特点?探究新知等腰三角形的性质知识点13.3等腰三角形/ABCAB=AC等腰三角形探究新知13.3等腰三角形/【思考】△ABC是轴对称图形吗?它的对称轴是什么?ACDB折痕所在的直线是它的对称轴.等腰三角形是轴对称图形.探究新知13.3等腰三角形/把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角.重合的线段重合的角ACBDAB与ACBD与CDAD与AD∠B与∠C∠BAD与∠CAD∠ADB与∠ADC【思考】由这些重合的角,你能发现等腰三角形的性质吗?说一说你的猜想探究新知13.3等腰三角形/ABC已知:△ABC中,AB=AC,求证:∠B=C.【思考】如何构造两个全等的三角形?猜想:等腰三角形的两个底角相等.如何证明两个角相等呢?可以运用全等三角形的性质“对应角相等”来证.探究新知13.3等腰三角形/已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.ABCD证明:作底边的中线AD,则BD=CD.AB=AC(已知),BD=CD(已作),AD=AD(公共边),∴△BAD≌△CAD(SSS).∴∠B=∠C(全等三角形的对应角相等).在△BAD和△CAD中方法一:作底边上的中线.还有其他的证法吗?探究新知13.3等腰三角形/已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.ABCD证明:作顶角的平分线AD,则∠BAD=∠CAD.AB=AC(已知),∠BAD=∠CAD(已作),AD=AD(公共边),∴△BAD≌△CAD(SAS).∴∠B=∠C(全等三角形的对应角相等).方法二:作顶角的平分线在△BAD和△CAD中探究新知13.3等腰三角形/由△BAD≌△CAD,除了可以得到∠B=∠C之外,你还可以得到哪些相等的线段和相等的角?和你的同伴交流一下,看看你有什么新的发现?解: △BAD≌△CAD,由全等三角形的性质易得BD=CD,∠ADB=∠ADC,∠BAD=∠CAD.又 ∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,即AD是等腰△ABC底边BC上的中线、顶角∠BAC的角平分线、底边BC上的高线.ABCD探究新知【想...