第12章一次函数12.1函数第2课时函数的表示方式1.了解并掌握函数表示方法:列表法、解析法及图象法,理解这三种表示方法的优缺点;(重点)2.掌握函数自变量范围的确定和函数值的求法;3.能用这三种表示函数的方法解决简单的实际问题.(难点)学习目标导入新课回顾与思考下列问题中的变量y是不是x的函数?是(1)y=2x(2)y+2x=3是(3)y=不是xy(6)是xy(7)不是x(4)y=x2(5)y2=x(8)y=±x+5(9)y=x2+3z是是不是不是(x≥0)在计算器上按照下面的程序进行操作:输入x(任意一个数)按键×2=显示y(计算结果)x13-40101y711-35207显示的数y是输入的数x的函数吗?为什么?填表:+5如果是,写出它的解析式.y=2x+5导入新课动手操作讲授新课☆用列表法、解析法与图象法表示函数回想上一节课研究的三个问题问题1:用热气球探测高空气象时间t/min01234567…海拔高度h/m500550600650700750800850…问题2:绘制用电负荷曲线问题3:汽车刹车问题2562vs由此你发现了什么?表示函数的一般方法列表法图象法解析法函数的三种表示法:y=2.88x图象法、列表法、解析式法.14916253649问题3:汽车刹车问题2562vs由此你发现了什么?列表法解析法图象法定义实例优点通过列出自变量的值,与对应函数值的表格来表示函数关系的方法问题1具体反映了函数随自变量的数值对应关系用数学式子表示函数关系的方法问题3准确地反映了函数随自变量的数量关系用图象来表示两个变量间的函数关系的方法问题2直观地反映了函数随自变量的变化而变化的规律函数三种表示方法的区别☆自变量的取值范围及求函数值例1求下列函数中自变量x的取值范围:(1)y=2x+4;(2)y=-2x2;(3)(4)1;2yx3yx.解:(1)x为全体实数;(2)x为全体实数;(3)x≠2;(4)x≥3.典例精析(1)解析式是整式时,自变量取全体实数;(2)解析式是分式时,自变量的取值应使分母不为0;(3)解析式是平方根时,自变量取值范围应使被开方数大于或等于0;(4)解决实际问题时,必须既符合理论又满足实际,特别注意:不要先化简关系式再求取值范围.方法归纳解:(1)当x=3时,y=2x+4=2×3+4=10;(2)当x=3时,y=-2x2=-2×32=-18;(3)当x=3时,例2当x=3时,求下列中函数的函数值:如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值.111;232yx30yx.(4)当x=3时,(1)y=2x+4;(2)y=-2x2;(3)(4)1;2yx3yx.【归纳一】函数关系式中自变量的取值范围一般主要考...