19.2.2一次函数第1课时一次函数的概念教学设计课题一次函数的概念授课人素养目标1.结合具体情境理解一次函数的意义,能结合实际问题中的数量关系写出一次函数的解析式.2.能辨别一次函数与正比例函数的区别与联系,感悟一般与特殊之间的关系.3.会从实际问题中建立一次函数模型解决简单的问题.教学重点一次函数概念的理解和根据已知信息写出一次函数的解析式.教学难点从实际生活问题中建立一次函数模型.教学活动教学步骤师生活动活动一:设置情境,导入新课设计意图结合实例,吸引学生注意力,为学习新知识做好铺垫.【情境导入】(教材P89问题2)某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6.℃登山队员由大本营向上登高xkm时,他们所在位置的气温是y.℃试用函数解析式表示y与x的关系.这个函数是正比例函数吗?它与正比例函数有什么不同?答:y随x变化的规律是:从大本营向上,当海拔增加xkm时,气温从5℃减少6x.℃因此y与x的函数解析式为y=5-6x.这个函数也可以写为y=-6x+5.这个函数不是正比例函数.它与正比例函数形式不同.这节课我们将学习探究这种函数.【教学建议】教师带领学生共同探讨得到的实际问题的函数解析式,比较该函数与正比例函数的异同.活动二:问题引入,自主探究设计意图从大量生动有趣的实际问题情境出发,通过对一般规律的探索,从实际问题中抽象出一次函数的概念.探究点一次函数的概念阅读教材P90思考,回答其问题.答:4个问题中,变量之间的对应关系都是函数关系.这些问题的函数解析式分别为:(1)c=7t-35(20≤t≤25);(2)m=h-105;(3)y=0.1x+22;(4)y=-5x+50(0≤x<10).正如活动一中的函数y=-6x+5一样,上面这些函数都是常数k与自变量的积与常数b的和的形式.概念引入:一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数.提问:当b=0时,y=kx+b是我们之前学习过的哪种函数?答:当b=0时,y=kx+b即y=kx,是正比例函数,所以说正比例函数是一种特殊的一次函数.【教学建议】学生分组讨论写出函数解析式,找出此类函数解析式的共同特征,由教师总结出一次函数的概念.要特别强调:①自变量系数不为0(k≠0);②变量y与x的次数均为1.教学步骤师生活动归纳总结:正比例函数与一次函数的区别与联系可用图表表示如下:【对应训练】教材P90练习第1题.(等于某个正方形的面积减去4个直角三角形的面积),再引导学生得到命题;(3)可以让学生拿一张长方活动三:重点突破,提升探究设...