第12章一次函数12.2一次函数第2课时一次函数的图象和性质学习目标1.了解一次函数的图象与性质.(重点)2.能灵活运用一次函数的图象与性质解答有关问题.(难点)导入新课复习引入形如的函数,叫做正比例函数;形如的函数,叫做一次函数;当b=0时,y=kx+b就变成了,所以说正比例函数是一种特殊的一次函数.正比例函数的图象是一条经过点的.y=kx(k是常数,k≠0)y=kx+b(k,b是常数,k≠0)y=kx原直线正比例函数解析式y=kx(k≠0)性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小.一次函数解析式y=kx+b(k≠0)针对函数y=kx+b,要研究什么?怎样研究?图象:经过原点和(1,k)的一条直线xyOk>0k<0xyO??研究函数y=kx+b(k≠0)的图象和性质:研究方法:画图象→观察图象→变量(坐标)意义解释.讲授新课☆一次函数的图象的画法在上一课的学习中,我们学会了正比例函数图象的画法,分为三个步骤.①列表②描点③连线那么你能用同样的方法画出一次函数的图象吗?-3-2-154321o-2-3-4-52345xy1y=-2x+1描点、连线一次函数的图象是什么?-1列表x–2–1012y=-2x+1531–1–3012345678910012345012345012345678910012345012345012345678910012345012345012345678910012345012345例1:画出一次函数y=-2x+1的图象总结归纳一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点,再过这两点画直线就可以了.一般过(0,b)和(1,k+b)或(,0)bkyxOyxObkxy(0,b)(,0)kb与y轴交于点(0,b),b叫做直线y=kx+b在y轴上的截距.213yx例1画出直线,并求它的截距.132xy解:对于,过(0,-1),(,0)即得的图象如图所示,它的截距是-1.132xy23132xy典例精析-3O-223123-1-1-2x1yO用你认为最简单的方法画出下列函数的图象:(1)y=-2x-1;(2)y=0.5x+1x01y=-2x-1y=0.5x+1-1-31y=-2x-1做一做1.5y=0.5x+1也可以先画直线y=-2x与y=0.5x,再分别平移它们,也能得到直线y=-2x-1与y=05x+1....xy2O...活动:请大家用描点法在同一坐标系内画出一次函数y=x+2,y=x-2的图象.x…-2-1012…y=x+2……y=x-2……0-31-42-23-140...y=x+2y=x-2思考:观察它们的图象有什么特点?y=xy=x+2y=x-2y2Ox2●●观察三个函数图象的平移情况:探究归纳把一次函数y=x+2,y=x-2的图象与y=x比较,发现:1.这三个函数的图象形状都是,并且倾斜程度______.2.函数y=x的图象经过原点,函数y=x+2的图象与y轴交于点,即它可以看作由直线y=x向平移个单位...