分享
2005考研学三真题解析.docx
下载文档

ID:3251813

大小:192.54KB

页数:15页

格式:DOCX

时间:2024-02-07

收藏 分享赚钱
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,汇文网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:3074922707
2005 考研 学三真 题解
2005年考研数学(三)真题解析 一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)极限= 2 . 【分析】 本题属基本题型,直接用无穷小量的等价代换进行计算即可. 【详解】 = (2) 微分方程满足初始条件的特解为 . 【分析】 直接积分即可. 【详解】 原方程可化为 ,积分得 , 代入初始条件得C=2,故所求特解为 xy=2. (3)设二元函数,则 . 【分析】 基本题型,直接套用相应的公式即可. 【详解】 , , 于是 . (4)设行向量组,,,线性相关,且,则a= . 【分析】 四个4维向量线性相关,必有其对应行列式为零,由此即可确定a. 【详解】 由题设,有 , 得,但题设,故 (5)从数1,2,3,4中任取一个数,记为X, 再从中任取一个数,记为Y, 则 = . 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分. 【详解】 =+ ++ = (6)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1 已知随机事件与相互独立,则a= 0.4 , b= 0.1 . 【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b的取值. 【详解】 由题设,知 a+b=0.5 又事件与相互独立,于是有 , 即 a=, 由此可解得 a=0.4, b=0.1 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7)当a取下列哪个值时,函数恰好有两个不同的零点. (A) 2. (B) 4. (C) 6. (D) 8. [ B ] 【分析】 先求出可能极值点,再利用单调性与极值画出函数对应简单图形进行分析,当恰好有一个极值为零时,函数f(x)恰好有两个不同的零点. 【详解】 =,知可能极值点为x=1,x=2,且 ,可见当a=4时,函数f(x) 恰好有两个零点,故应选(B). (8)设,,,其中,则 (A) . (B). (C) . (D) . [ A ] 【分析】 关键在于比较、与在区域上的大小. 【详解】 在区域上,有,从而有 由于cosx在 上为单调减函数,于是 因此 ,故应选(A). (9)设若发散,收敛,则下列结论正确的是 (A) 收敛,发散 . (B) 收敛,发散. (C) 收敛. (D) 收敛. [ D ] 【分析】 可通过反例用排除法找到正确答案. 【详解】 取,则发散,收敛, 但与均发散,排除(A),(B)选项,且发散,进一步排除(C), 故应选(D). 事实上,级数的部分和数列极限存在. (10)设,下列命题中正确的是 (A) f(0)是极大值,是极小值. (B) f(0)是极小值,是极大值. (C) f(0)是极大值,也是极大值. (D) f(0)是极小值,也是极小值. [ B ] 【分析】 先求出,再用取极值的充分条件判断即可. 【详解】 ,显然 , 又 ,且,故f(0)是极小值,是极大值,应选(B). (11)以下四个命题中,正确的是 (A) 若在(0,1)内连续,则f(x)在(0,1)内有界. (B)若在(0,1)内连续,则f(x)在(0,1)内有界. (C)若在(0,1)内有界,则f(x)在(0,1)内有界. (D) 若在(0,1)内有界,则在(0,1)内有界. [ C ] 【分析】 通过反例用排除法找到正确答案即可. 【详解】 设f(x)=, 则f(x)及均在(0,1)内连续,但f(x)在(0,1)内无界,排除(A)、(B); 又在(0,1)内有界,但在(0,1)内无界,排除(D). 故应选(C). (12)设矩阵A= 满足,其中是A的伴随矩阵,为A的转置矩阵. 若为三个相等的正数,则为 (A) . (B) 3. (C) . (D) . [ A ] 【分析】 题设与A的伴随矩阵有关,一般联想到用行列展开定理和相应公式: . 【详解】 由及,有,其中为的代数余子式,且或 而,于是,且 故正确选项为(A). (13)设是矩阵A的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是 (A) . (B) . (C) . (D) . [ D ] 【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 ,则 , . 由于线性无关,于是有 当时,显然有,此时,线性无关;反过来,若,线性无关,则必然有(,否则,与=线性相关),故应选(B). 方法二: 由于 , 可见,线性无关的充要条件是故应选(D). (14) 设一批零件的长度服从正态分布,其中均未知. 现从中随机抽取16个零件,测得样本均值,样本标准差,则的置信度为0.90的置信区间是 (A) (B) (C)(D) [ C ] 【分析】 总体方差未知,求期望的区间估计,用统计量: 【详解】 由正态总体抽样分布的性质知,, 故的置信度为0.90的置信区间是,即故应选(C). 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分8分) 求 【分析】 型未定式,一般先通分,再用罗必塔法则. 【详解】 = = = (16)(本题满分8分) 设f(u)具有二阶连续导数,且,求 【分析】 先求出二阶偏导数,再代入相应表达式即可. 【详解】 由已知条件可得 , , , , 所以 = = (17)(本题满分9分) 计算二重积分,其中. 【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可. 【详解】 记, , 于是 = = =+= (18)(本题满分9分) 求幂级数在区间(-1,1)内的和函数S(x). 【分析】幂级数求和函数一般采用逐项求导或逐项积分,转化为几何级数或已知函数的幂级数展开式,从而达到求和的目的. 【详解】 设 , ,, 则 , 由于 =, , 因此 , 又由于 ,故 所以 (19)(本题满分8分) 设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,,.证明:对任何a,有 【分析】 可用参数变易法转化为函数不等式证明,或根据被积函数的形式,通过分部积分讨论. 【详解】 方法一:设 , 则F(x)在[0,1]上的导数连续,并且 , 由于时,,因此,即F(x)在[0,1]上单调递减. 注意到 , 而 =, 故F(1)=0. 因此时,,由此可得对任何,有 方法二: =, = 由于时,,因此 ,, , 从而 (20)(本题满分13分) 已知齐次线性方程组 (i) 和 (ii) 同解,求a,b, c的值. 【分析】 方程组(ii)显然有无穷多解,于是方程组(i)也有无穷多解,从而可确定a,这样先求出(i)的通解,再代入方程组(ii)确定b,c即可. 【详解】 方程组(ii)的未知量个数大于方程个数,故方程组方程组(ii)有无穷多解.因为方程组(i)与(ii)同解,所以方程组(i)的系数矩阵的秩小于3. 对方程组(i)的系数矩阵施以初等行变换 , 从而a=2. 此时,方程组(i)的系数矩阵可化为 , 故是方程组(i)的一个基础解系. 将代入方程组(ii)可得 或 当时,对方程组(ii)的系数矩阵施以初等行变换,有 , 显然此时方程组(i)与(ii)同解. 当时,对方程组(ii)的系数矩阵施以初等行变换,有 , 显然此时方程组(i)与(ii)的解不相同. 综上所述,当a=2,b=1,c=2时,方程组(i)与(ii)同解. (21)(本题满分13分) 设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为矩阵. (I) 计算,其中; (II)利用(I)的结果判断矩阵是否为正定矩阵,并证明你的结论. 【分析】 第一部分直接利用分块矩阵的乘法即可;第二部分是讨论抽象矩阵的正定性,一般用定义. 【详解】 (I) 因 ,有 = = =. (II)矩阵是正定矩阵. 由(I)的结果可知,矩阵D合同于矩阵 又D为正定矩阵,可知矩阵M为正定矩阵. 因矩阵M为对称矩阵,故为对称矩阵. 对及任意的,有 故为正定矩阵. (22)(本题满分13分) 设二维随机变量(X,Y)的概率密度为 求:(I) (X,Y)的边缘概率密度; (II) 的概率密度 ( III ) 【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度; 直接用条件概率公式计算即可. 【详解】 (I) 关于X的边缘概率密度 == = 关于Y的边缘概率密度 == = (II) 令, 1) 当时,; 2) 当时, =; 3) 当时, 即分布函数为: 故所求的概率密度为: (III) (23)(本题满分13分) 设为来自总体N(0,)的简单随机样本,为样本均值,记 求:(I) 的方差; (II)与的协方差 (III)若是的无偏估计量,求常数c. 【分析】 先将表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求与的协方差,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质;估计,利用其数学期望等于确定c即可. 【详解】 由题设,知相互独立,且 , (I) = = (II) = = = = = (III) = =, 故

此文档下载收益归作者所有

下载文档
收起
展开