12.2一元二次方程的解法第1课时教学目标【知识与能力】1、知道根据平方根的定义解形如(x+h)2=m的方程,它的依据是数的开方;2、会用平方根的定义解形如(x-a)2=b(b≥0)的方程;3、在把(x-a)2=b(b≥0)看成x2=b(b≥0)的过程中,引导学生体会“换元”的数学方法。【过程与方法】经历探索形如(x+h)2=m的方程的解法,体会一元二次方程降次的思想和换元的思想。【情感态度价值观】让学生通过探索一元二次方程的解法的过程,体验将复杂问题简单化,从而提高学习数学的学习兴趣。教学重难点【教学重点】根据平方根的定义解形如(x+h)2=m的方程。【教学难点】用平方根的定义解形如(x-a)2=b(b≥0)的方程。课前准备无教学过程一、一预学:要求学生复述平方根的意义。(1)文字语言表示:如果一个数的平方的等于a,这个数叫a的平方根。(2)用式子表示:若x2=a,则x叫做a的平方根。一个正数有两个平方根,这两个平方根互为相反数;零的平方根是零;负数没有平方根。求适合等于x2=4的x的值。说明:学生不难看出本题的解(x=2或x=-2),教学中要注意引导学生观察这个方程的特点,探索解这个方程与已学知识(数的开方)的联系。在求出方程x2-4=0的解以后,引导学生总结:解这样的方程,就是要“求一个数,使它的平方是4”,即求4的平方根,可用开平方的方法。这个过程体现了数学常用的一种重要的数学思想方法——化归。事实上,解决数学问题的过程,就是一系列的转化过程,把未知的转化为已知的,最终使问题解决。二、探究:问题1如果一元二次方程:aX2+bX+c=0(a≠0)的一次项系数b、常数项c中至少有一个为0,那么就能得到那些特殊的一元二次方程?(1)ax2=0(2)ax2+c=0(3)ax2+bx=0问题2怎样解方程ax2=0?2(可以3x2=0为具体例子,学生根据平方根的定义,得到x=0。应指出3x2=0有两个相等的实数根,即x=0,x=0;这与一元一次方程3x=0有一个根x=0是有区别的,进而指出:方程ax2=0有两个相等的实数根x=x=0)问题3怎样解方程ax2+c=0(a≠0)?可以(1)x2-4=0,(2)2x2-50=0,(3)2x2+50=0等方程为例,由学生把它们变形为x2=-的形式,用平方根的定义来求解。接着指出:这种解一元二次方程的方法叫做直接开平方法,其中适合方程(3)的实数x不存在,所以原方程无实数解。进而引导学生归纳方程ax2+c=0的解的情况:当a、c异号时,方程ax2+c=0有两个不相等的实数根;当a、c同号时,方程ax2+c=0没有实数根。说明:以上教学设计让学生经历由简单到复杂的研究过程,对于一元二次方程的解有全...