122.2一元二次方程的解法第5课时教学目标1.理解并掌握一元二次方程根的判别式,能运用判别式,在不解方程的前提下判断一元二次方程根的情况;2.通过一元二次方程根的情况的探究过程,体会从特殊到一般、猜想及分类讨论的数学思想,提高观察、分析、归纳的能力.教学重难点【教学重点】一元二次方程根的判别式.【教学难点】运用判别式在不解方程的前提下判断一元二次方程根的情况.课前准备无教学过程一、情境导入老师写了4个一元二次方程让同学们判断它们是否有解,大家都才解第一个方程呢,小强突然站起来说出每个方程解的情况,你想知道他是如何判断的吗?二、合作探究探究点一:一元二次方程的根的情况【类型一】判断一元二次方程根的情况不解方程,判断下列方程的根的情况.(1)2x2+3x-4=0;(2)x2-x+=0;(3)x2-x+1=0.解析:根据根的判别式我们可以知道当b2-4ac≥0时,方程才有实数根,而b2-4ac<0时,方程没有实数根.由此我们不解方程就能判断一元二次方程根的情况.解:(1)2x2+3x-4=0,a=2,b=3,c=-4,∴b2-4ac=32-4×2×(-4)=41>0.∴方程有两个不相等的实数根.(2)x2-x+=0,a=1,b=-1,c=.∴b2-4ac=(-1)2-4×1×=0.∴方程有两个相等的实数根.(3)x2-x+1=0,a=1,b=-1,c=1.∴b2-4ac=(-1)2-4×1×1=-3<0.∴方程没有实数根.方法总结:给出一个一元二次方程,不解方程,可由b2-4ac的值的符号来判断方程根的情况.2当b2-4ac>0时,一元二次方程有两个不相等的实数根;当b2-4ac=0时,一元二次方程有两个相等的实数根;当b2-4ac<0时,一元二次方程无实数根.【类型二】由一元二次方程根的情况确定字母系数的取值已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是()A.a>2B.a<2C.a<2且a≠1D.a<-2解析:由于一元二次方程有两个不相等的实数根,判别式大于0,得到一个不等式,再由二次项系数不为0知a-1不为0.即4-4(a-1)>0且a-1≠0,解得a<2且a≠1.选C.方法总结:若方程有实数根,则b2-4ac≥0.由于本题强调说明方程是一元二次方程,所以,二次项系数不为0.因此本题还是一道易错题.【类型三】一元二次方程根的判别式与三角形的综合已知a,b,c分别是△ABC的三边长,求证:关于x的方程b2x2+(b2+c2-a2)x+c2=0没有实数根.解析:欲证一元二次方程没有实数根,只需证明它的判别式Δ<0即可.由a,b,c是三角形三条边的长可知a,b,c都是正数.由...