对数与对数函数[考试要求]1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点,能作出底数为2,10,的对数函数的图象.3.体会对数函数是一类重要的函数模型.4.了解指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反函数.1.对数的概念如果ax=N(a>0,且a≠1),那么x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数.提醒:指数式与对数式的关系2.对数的性质、换底公式与运算性质(1)对数的性质:①loga1=0;②alogaN=N;③logaab=b(a>0,且a≠1).(2)换底公式:logab=(a,c均大于0且不等于1,b>0).(3)对数的运算性质:如果a>0,且a≠1,M>0,N>0,那么:①loga(M·N)=logaM+logaN;②loga=logaM-logaN;③logaMn=nlogaM(n∈R).3.对数函数的定义、图象与性质定义函数y=logax(a>0且a≠1)叫作对数函数图象a>10<a<11性质定义域:(0,+∞)值域:R当x=1时,y=0,即过定点(1,0)当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0在(0,+∞)上为增函数在(0,+∞)上为减函数4.反函数指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.1.换底公式的三个重要结论(1)logab=;(2)logambn=logab;(3)logab·logbc·logcd=logad.2.对数函数的图象与底数大小的关系如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数,故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.一、易错易误辨析(正确的打“√”,错误的打“×”)(1)函数y=log2(x+1)是对数函数.()(2)log2x2=2log2x.()(3)函数y=ln与y=ln(1+x)-ln(1-x)的定义域相同.()(4)对数函数y=logax(a>0且a≠1)的图象过定点(1,0),且过点(a,1),,函数图象不在第二、三象限.()[答案](1)×(2)×(3)√(4)√二、教材习题衍生1.(多选)(2020·山东临沂期末)若10a=4,10b=25,则下列结论正确的是()A.a+b=2B.b-a=12C.ab>8(lg2)2D.b-a>lg6ACD[由10a=4,10b=25,得a=lg4,b=lg25,则a+b=lg4+lg25=lg100=2,b-a=lg25-lg4=lg,又lg>lg6,∴b-a>lg6,∴ab=4lg2lg5>4lg2lg4=8(lg2)2,故选ACD.]2.已知a=2,b=log2,c=log,则()A.a>b>cB.a>c>bC.c>b>a...