第2章有理数2.6.2有理数加法的运算律学习目标【学习目标】1.让学生能运用加法运算律简化加法运算;2.让学生理解加法运算律在加法运算中的作用,适当进行推理训练;3.培养分类与归纳能力,强化学生的数形结合思想,提高学生的自学能力及理解能力,激发学生学习数学的兴趣.【学习重点】有理数加法的运算律,并能运用加法运算律简化运算.【学习难点】灵活运用加法运算律简化运算.情景导入1.叙述有理数加法的法则.2.计算:(1)(-10)+(-8)=_______;(2)(-6)+(+6)=____;(3)(-37)+0=________;(4)(-843)+(-557)=_______;(5)(-25)+(+15)=______;(6)(+112)+(-216)=_______.-180-37-1400-15-233.在小学里我们学过加法的运算律:_________________________________.引入负数后,这些运算律是否还成立呢?情景导入加法的交换律、加法的结合律自学互研知识模块一有理数加法运算律阅读教材P32~P33,完成下面的内容.1.探究有理数加法交换律探究计算:30+(-20),(-20)+30,两次所得的结果相同吗?再换几个加数试一试,从上述计算中,你能得出什么结论?2.探究有理数加法结合律探究计算[8+(-5)]+(-4),8+[(-5)+(-4)],两次所得的和相同吗?再换几个加数试一试,从上述计算中,你能得出什么结论?归纳(1)有理数加法交换律:两个数相加,交换加数的位置,和不变.用字母表示为:a+b=b+a.(2)有理数加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用字母表示为:(a+b)+c=a+(b+c).(1)有理数加法交换律:两个数相加,交换加数的位置,和不变.用字母表示为:a+b=b+a.(2)有理数加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用字母表示为:(a+b)+c=a+(b+c).范例在23+(-2.5)+3.5+(-23)=[23+(-23)]+[(-2.5)+3.5]中运用了()A.加法的交换律B.加法的结合律C.加法的交换律和结合律D.以上都不对C仿例根据加法的交换律和结合律,在式子中填出相应的数.(1)-4+_______=(-15)+___________;(2)(-1.75)+12+(-0.25)=12+[(-1.75)+________];(3)(-2.28)+3.7+(-3.72)+6.3=[(-2.28)+(_______)]+[3.7+____].(-15)(-4)(-0.25)-3.726.3知识模块二有理数加法运算律的应用自学互研范例计算:16+(-25)+24+(-35).解:16+(-25)+24+(-35)=16+24+(-25)+(-35)(加法交换律)=16+24+[(-25)+(-3...