124.2直角三角形的性质教学目标1.理解并掌握直角三角形的性质;2.能利用直角三角形的性质解决问题.教学重难点【教学重点】直角三角形的性质.【教学难点】用直角三角形的性质解决问题.课前准备无教学过程一、情境导入用两个全等的含30°角的直角三角尺,你能拼出一个等边三角形吗?说说理由,并把你的发现和大家交流一下.二、合作探究探究点一:直角三角形斜边上的中线的性质如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.解析:(1)根据“直角三角形斜边上的中线等于斜边的一半”可得DE=AE=AB,DF=AF=AC,再根据四边形的周长的公式计算即可得解;(2)根据“到线段两端点距离相等的点在线段的垂直平分线上”证明即可.(1)解: AD是△ABC的高,E、F分别是AB、AC的中点,∴DE=AE=AB=×10=5,DF=AF=AC=×8=4,∴四边形AEDF的周长=AE+DE+DF+AF=5+5+4+4=18;(2)证明: DE=AE,DF=AF,∴E、F在线段AD的垂直平分线上,∴EF垂直平分AD.方法总结:当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解.探究点二:在直角三角形中,30°角所对的直角边等于斜边的一半2等腰三角形的一个底角为75°,腰长4cm,那么腰上的高是________cm,这个三角形的面积是________cm2.解析:因为75°不是特殊角,但是根据“三角形内角和为180°”可知等腰三角形的顶角为30°,依题意画出图形,则有∠A=30°,BD⊥AC,AB=4cm,所以BD=2cm,S△ABC=AC·BD=×4×2=4(cm2).故答案为2,4.方法总结:作出准确的图形、构造含30°角的直角三角形是解决此题的关键.如图,某船于上午11时30分在A处观测到海岛B在北偏东60°方向;该船以每小时10海里的速度向东航行到C处,观测到海岛B在北偏东30°方向;航行到D处,观测到海岛B在北偏西30°方向;当船到达C处时恰与海岛B相距20海里.请你确定轮船到达C处和D处的时间.解析:根据题意得出∠BAC,∠BCD,∠BDA的度数,根据直角三角形的性质求出BC、AC、CD的长度.根据速度、时间、路程关系式求出时间.解:由题意得∠BCD=90°-30°=60°,∠BDC=90°-30°=60°.∴∠BCD=∠BDC=60°,∴△BCD为等边三角形.在△ABD中, ∠BAD=90°-60°=30°,∠BDC=60°,∴∠ABD=90°,即△ABD为直角三角形,∴∠ABC=30°. BC=20海里,∴CD=BD=20海里.又 BD=AD,∴AD=40海里.∴AC=A...